NOESY

NOESY with axial peak suppression

*******************************************************************
**   NOESY with axial peak suppression, hypercomplex-detected    **
****** The System *************************************************
spectrometer(MHz)   500
spinning_freq(kHz)  *
channels            H1
nuclei              H1 H1
atomic_coords       *
cs_isotropic        -2 2 ppm
csa_parameters      *
j_coupling          *
quadrupole          *
dip_switchboard     *
csa_switchboard     *
exchange_nuclei     *
bond_len_nuclei     *
bond_ang_nuclei     *
tors_ang_nuclei     *
groups_nuclei       *
******* Pulse Sequence ******************************
CHN 1
timing(usec)         0.5 (250)256D1 0.5 (200000) 0.5  (250)256D2
power(kHz)           500   0        500    0     500    0
phase(deg)           90    0        -90    0      90    0
freq_offs(kHz)        0    0          0    0       0    0
phase_cycling_cos 11113333 *          *    *   12341234 *  12343412(RCV)
phase_cycling_sin 44442222 *          *    *   12341234 *  12343412(RCV)
******* Variables ************************************************

W0= 5e-4
W1a=5e-4
W1b=5e-4
W2= 2.5e-4

T1ZQ_1_2_4=0.5/W0
T1DQ_1_2_4=0.5/W2
T1SQ_1_4=0.5/W1a
T1SQ_2_4=0.5/W1b

** Alternatively, one can use RZ/RR variables to define spin-lattice relaxation:

*R1=-(W0+2*W1a+W2)
*R2=-(W0+2*W1b+W2)
*Rc=W0-W2
*RZ_1_4="I1z"
*RZ_2_4="I2z"
*RR_4=["R1 Rc; Rc R2"]

fig_title="NOESY with axial peak suppression"

******* Options **************************************************
rho0                F1z
observables         F1p
EulerAngles         *
n_gamma             *
line_broaden(Hz)    0 0 100 100
zerofill            *
FFT_dimensions      1 2 ppm
options             -re -py