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Abstract

Exact numerical simulations of NMR experiments are often required for the development of new techniques and for the extrac-
tion of structural and dynamic information from the spectra. Simulations of solid-state magic angle spinning (MAS) experiments
can be particularly demanding both computationally and in terms of the programming required to carry them out, even if special
simulation software is used. We recently developed a number of approaches that dramatically improve the efficiency and allow a
high degree of automation of these computations. In the present paper, we describe SPINEVOLUTION, a highly optimized com-
puter program that implements the new methodology. The algorithms used in the program will be described separately. Although
particularly efficient for the simulation of experiments with complex pulse sequences and multi-spin systems in solids, SPINEVO-
LUTION is a versatile and easy to use tool for the simulation and optimization of virtually any NMR experiment. The performance
of SPINEVOLUTION was compared with that of another recently developed NMR simulation package, SIMPSON. Benchmarked
on a series of examples, SPINEVOLUTION was consistently found to be orders of magnitude faster. At the time of publication, the
program is available gratis for non-commercial use.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

With the continued increase in the complexity of
NMR techniques and applications, numerical simula-
tions have become an indispensable part of modern
day research. They are now commonly required for the
extraction of structural parameters from the data, design
of new experiments, and theoretical research. This is
especially true for solid-state NMR, where most applica-
tions employ magic angle spinning (MAS) and 1H-de-
coupling to obtain high resolution spectra, while
various recoupling methods are used to restore the aver-
aged dipolar and chemical shift anisotropy (CSA) inter-

actions [1,2]. These techniques normally create a
homogeneous time-dependent Hamiltonian [3], requiring
the use of numerical methods whenever the experiments
have to be simulated exactly. Typically, such experiments
are designed and interpreted in terms of the first few
orders of the average Hamiltonian theory (AHT) [4],
which can often be used to obtain approximate solutions.
However, while being a powerful analytical tool, AHT is
not always applicable or sufficiently accurate. Further-
more, even in the experiments where this formalism pro-
vides a reasonably accurate analytic description of the
two-spin systems, it remains necessary to invoke numer-
ical methods for most cases involving multiple spins. In
solution-state NMR, analytic descriptions of experi-
ments are much more common. However, numerical sim-
ulations are still important, for example, when studying
non-ideal pulses (including shaped pulses [5]), various
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effects due to strong coupling and relaxation, and even
single-scan 2D experiments [6,7].

Driven by demands of the experimental NMR,
numerous computer programs were developed over
the past four decades for the simulation of NMR
experiments [8–41]. Most of this software is easily
assigned to one of the following categories: analytic

NMR tools (typically implemented in Mathematica),
specialized application programs (e.g., a NOESY spectra
simulator), application programming interfaces (API�s)
(providing building blocks for the development of
application programs), general solution-state NMR sim-

ulation programs, and general NMR simulation pro-

grams. The two later types are called general in the
sense that they can be used for the simulation of exper-
iments with a wide variety of pulse sequences and spin
systems, and thus have the functionality of a virtual
NMR spectrometer (in addition to any other function-
alities they may have). Additionally, as opposed to an
API, a simulation program must have an abstract,
high-level interface, which should not require any pro-
gramming, in general.

In spite of all these developments, only a few instances
of the currently available software are suitable for the
simulation of general NMR experiments. As a conse-
quence, until a few years ago, the design of new tech-
niques, particularly in the solid-state NMR, had to be
often combined with the development of new problem-
specific software [23,25,42–45]. For the solid-state
NMR, this had been more than an inconvenience: it
seems that the development of the whole field had been
held back due to the lack of an appropriate general sim-
ulation tool. This rather bold statement is evidenced by
the recent popularity enjoyed by SIMPSON [39], and
by the vast interest expressed in such a tool in the
community.

To the best of our knowledge, the first reasonably
general NMR simulation software was ANTIOPE
[27]. The program is still maintained and distributed
by its author (J.S. Waugh) and has recently acquired
a particularly user-friendly interface and undergone
other significant changes since its initial publication.
An API-type package GAMMA [31], which appeared
soon after ANTIOPE, is designed as a library of
C++ classes and methods intended as building blocks
for the construction of various problem-specific simu-
lation programs. Although the development of these
programs is much facilitated by GAMMA, a signifi-
cant amount of programming is often required to per-
form a simulation. The package has been extensively
used over the years for the simulation of both NMR
and EPR experiments. A similar C++ API (BlochLib
[40]) has been developed recently that relies on efficient
numerical libraries for its core calculations and is
superior to GAMMA in terms of efficiency. Currently
the most popular in the solid-state NMR community

simulation package is SIMPSON [39]. It is designed
as a high-level API, where the simulation is driven
by an input file written in the scripting language Tcl.
SIMPSON requires no compilation and much less pro-
gramming to perform a simulation. The major applica-
tion of the program is the simulation of MAS
experiments. Overall, it provides a reasonable compro-
mise between efficiency, convenience, and versatility.

The aforementioned three qualities are probably the
most important characteristics desired from a general
NMR simulation program. Developing software that
is not deficient in any of these areas has been a great
challenge so far. Indeed, versatility can be achieved in
the most straightforward manner by taking the API
approach of GAMMA, BlochLib, and, to a lesser
degree, SIMPSON. However, an interface that requires
writing C++ code for a sophisticated API platform is
unlikely to be convenient in most cases. Furthermore,
to efficiently propagate a density matrix through a com-
plex MAS experiment with multiple pulse sequences,
one has to compute and recycle an elaborate collection
of propagators. There is very little support provided
to this end in GAMMA, BlochLib, or SIMPSON. As
a result, using the most efficient algorithm for such a
simulation would be either impossible due to restrictions
of the API, or highly challenging due to the substantial
amount of expertise and programming required. In
addition, the efficiency of any simulation depends also
on the efficiency of the computational techniques and
algorithms that the simulation package relies upon
internally, and which are beyond the user�s control. If
these techniques comprise only a rather basic set, crea-
tion of a simple interface to such a package is relatively
straightforward, as exemplified by some older solution-
state programs. However, if these techniques comprise
an extensive library of highly efficient and often prob-
lem-specific algorithms, then their integration into a
unified general NMR simulation program with a user-
friendly interface presents a significant challenge, which
is in addition to the challenge of developing these meth-
ods and creating such a library.

In an attempt to solve this problem, we developed
SPINEVOLUTION, a general NMR simulation pro-
gram that implements a number of novel computa-
tional techniques and methodological approaches to
this end. Although specifically tailored for the simula-
tion of solid-state MAS experiments, SPINEVOLU-
TION can also be used in the context of solution
state NMR, particularly to solve various optimization
problems. The program features a friendly, text file
based interface, where the pulse sequences are speci-
fied in terms of the ‘‘canonical representation.’’ The
representation is a natural, non-algorithmic description
of NMR experiments that captures their periodic
structure in a form easily explored for the construc-
tion of efficient propagation schemes.
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The computational technique largely responsible for
the high efficiency of multi-spin computations in
SPINEVOLUTION relies on the Chebyshev expansion
for the computation of the propagators and thus is
able to exploit the sparsity of the Hamiltonian. This
algorithm behaves asymptotically as O(N24N), where
N is the number of spins in the system, while the tra-
ditional algorithm, which relies on the diagonalization
of the Hamiltonian, behaves as O(8N). Another tech-
nique, the g-COMPUTE algorithm, which generalizes
the previously known COMPUTE [46] and c-COM-
PUTE [47–49] algorithms, combines efficient propaga-
tion in the frequency domain with the powder
averaging over the c angle. It extends the applicability
of the c-COMPUTE algorithm to multidimensional
experiments, unlimited spectral widths, and much less
restrictive conditions for the rotor-synchronization of
the pulse sequence. The details of these and other
algorithms employed in the program will be discussed
elsewhere.

In the present publication, we discuss the methodolo-
gy, functionality, interface, and performance of SPIN-
EVOLUTION. At the time of publication, the current
version of the program is 2.8. In this version, some of
the program features described below are not functional
yet. However, the work is under way to implement these,
as well as a number of other features. Currently, SPIN-
EVOLUTION is available gratis for non-commercial
purposes. The program compiled for various platforms
(Linux, OS X, Irix, Windows, and Solaris) and the
examples described in this paper, as well as other exam-
ples and materials can be downloaded at the following
URLhttp://web.mit.edu/fbml/cmr/griffin-group/SPINE-
VOLUTION/.

2. NMR Hamiltonian

Although the NMR literature abounds with excellent
discussions of the spin Hamiltonian [50–56], no single
treatment contains all the details required for our pur-
poses. Therefore, we feel that it is important to provide
the reader with a coherent reference on all relevant theo-
retical and experimental aspects of the NMR Hamiltoni-
an, spelling out the conventions and definitions
employed to this end in SPINEVOLUTION. As men-
tioned above, we are presently concerned only with what
is computed by the program, as opposed to how these
computations are performed internally.

NMR interactions are best defined in the form they
enter into the full laboratory frame (Schrödinger repre-
sentation) spin Hamiltonian

HL ¼ HZ þ HL
RF þ HL

D þ HL
J þ HL

Q. ð1Þ

The interaction of the spins with the static magnetic field
is given by the Zeeman term,

HZ ¼ �
X
i

c Bi � Ii ¼
X
i

nB0
� xrefð1þ diÞ � Ii; ð2Þ

where the summation is over all nuclei in the system, and
Ii, c[i], and di are, respectively, the angular momentum
operator, the gyromagnetic ratio, and the chemical shift
tensor of the nucleus i; xref

[i] is the frequency of the refer-
ence compound, Bi is the static magnetic field at the site
of the nucleus, and nB0

is the unit vector in the direction
of the static magnetic field B0. The symbol [i] means here
‘‘the species of the nucleus i’’, so that ck and xk

ref denote
the gyromagnetic ratio and the frequency of the reference
for the nuclear species k.

For most purposes other than the tabulation of the
chemical shifts, it is usually more convenient to use a ref-
erence frequency that is not tied to any chemical com-
pound or spectrometer hardware, but can be set
instead to any desired value (usually near the Larmor fre-
quency). This frequency will not enter into the final
expression for the Hamiltonian and thus cannot affect
the results of any computations. However, it will serve
as a flexible common reference point for the offsets of
all other relevant frequencies. We will denote this fre-
quency as xk

�. Assuming that the frequency of the refer-
ence compound is given by the offset Dxk

ref ,

xk
ref ¼ xk

� þ Dxk
ref ð3Þ

the Zeeman term can be conveniently divided into two
parts:

HZ ¼ H 0
Z þ HL

CS; ð4Þ
where:

H 0
Z ¼

X
k

xk
�Fk � nB0

; ð5Þ

HL
CS ¼

X
i

nB0
�Xi � Ii; ð6Þ

and

Xi ¼ x� di þ Dxref . ð7Þ
The summation in Eq. (5) is over all nuclear species and
Fk is the total angular momentum for all spins of the spe-
cies k. Note that all angular frequencies are signed quan-
tities in our notation. Thus, for example, for c-positive
nuclei, Xi and di have opposite signs (if Dxk

ref ¼ 0) since
xk

� is negative. If pulsed field gradients (PFG�s) are used
in the experiment, Dxk

ref becomes a function of time and
position in the sample. For a linear gradient along z, for
example, the function is

Dxk
ref z; tð Þ ¼ Dxk

ref ;0 þ zckGk tð Þ. ð8Þ

The radio-frequency (RF) field term can be usually
represented as

HL
RF ¼ �

X
k

ckB
k
1 tð Þ cos xk

�
�� ��t þ

Z t

0

~xk
off t0ð Þdt0 þ ~/k tð Þ

� �
Fk � nB1

ð9Þ

[i]
[i]

[i][i]

250 M. Veshtort, R.G. Griffin / Journal of Magnetic Resonance 178 (2006) 248–282

ARTICLE IN PRESS



where the summation is over all spectrometer channels
(one per each nuclear species), Bk

1 tð Þ > 0 is the instanta-
neous B1 amplitude, ~xk

off tð Þ is the frequency offset, ~/k tð Þ
is the phase of the RF field, and nB1

is the unit vector
in the direction of B1 in the RF coil. By projecting B1

onto the plane perpendicular to the main magnetic field
and representing the resulting projection as the sum of
two circularly polarized RF components for each chan-
nel, one can separate the resonant part of HL

RF from
the nonresonant. Assuming that the vector nB1

lies in
the xz plane at the angle hB1

with the x axis (and z is in
the direction of B0), the following expression is obtained:

HL
RF ¼

X
k

xk
RF tð Þ

�� ��e�i
R t

0
dt0 xk

�þxk
off

t0ð Þð ÞF kz F kx cos/k tð Þf

þF ky sin/k tð Þ
�
e
i
R t

0
dt0 xk

�þxk
off

t0ð Þð ÞF kz þ HL
RF;nonres; ð10Þ

where

xk
RF tð Þ ¼ � 1

2
ckB

k
1 tð Þ cos hB1

ð11Þ

and

xk
off tð Þ ¼ � sign ckð Þ~xk

off tð Þ ð12aÞ

/k tð Þ ¼ � sign ckð Þ~/k tð Þ ð12bÞ
The dependence of the nutation frequency on the sign of
ck was removed in Eq. (10) by using a coordinate system,
which is rotated by 180� about the z axis when ck > 0.
The nonresonant terms, HL

RF;nonres, will be neglected since
their effects (mainly the Bloch-Siegert shift) are usually
insignificant. Note that while the spectrometer hardware
generates the frequency offsets ~xk

off tð Þ and phases ~/k tð Þ, it
is the sign-corrected frequency offsets xk

off tð Þ and phases
/k tð Þ that are ‘‘seen’’ by the nuclei.

The dipolar and the J-couplings are given by

HL
D ¼

X
i<j

Ii �Dij � Ij ð13Þ

and

HL
J ¼ 2p

X
i<j

Ii � Jij � Ij; ð14Þ

where Dij and Jij are the dipolar and J-coupling tensors.
The principal components of the dipolar coupling tensor
are Dij

XX ¼ Dij
YY ¼ �bij and Dij

ZZ ¼ 2bij, where bij is the
dipolar coupling constant,

bij ¼ � l0�h
4p

c c
r3ij

. ð15Þ

The quadrupolar coupling1 is given by

HL
Q ¼

X
i

eQi

2I i 2I i � 1ð Þ�h Ii � V
i � Ii

¼ 2p
X
i

vi
2I i 2I i � 1ð Þ Ii �

~V
i � Ii; ð16Þ

where Qi and Ii are the quadrupole moment and the
nuclear spin quantum number of nucleus i, and Vi is
the electric field gradient tensor at the site of the

nucleus, V i
ab ¼

o2V i

oraorb

����
r¼0

. In the second form of this

equation, vi = e2Qiqi/h is the quadrupolar coupling

constant, and ~V
i ¼ Vi=eqi is the reduced electric field

gradient tensor (eqi ¼ V i
ZZ is the largest principal

component of Vi).
The interactions of the internal Hamiltonian depend

on the symmetric2 second-rank tensors Xi, Dij, Jij, and
Vi. The following convention is commonly used to char-
acterize any such tensor A. The principal axes of A are
labeled to satisfy the following conditions in these axes:
AZZ � Aiso P AXX � Aiso P AYY � Aisojjjjjj , where Aiso is
the isotropic value of A,

Aiso ¼
1

3
TrA. ð17Þ

This leads to either AXX P AYY P AZZ or AXX 6 AYY 6 AZZ

order of the principal components. Then, anisotropy3 and
the asymmetryparameters ofA are defined, respectively, as

Aaniso ¼ AZZ � Aiso ð18Þ
and

gA ¼ AYY � AXX

Aaniso

. ð19Þ

The orientation of the principal axes of A is given by the
set of Euler angles (Fig. 1), which specify the rotation
from the principal to the ‘‘crystallite’’ axes. The later
are used as the common reference frame for all tensors
in the spin system under consideration. In general, the
rotation from any coordinate frame A to any coordinate
frame B will be specified by the set of Euler angles
XAB ¼ aAB; bAB; cABð Þ.

All interactions in the Hamiltonian above are defined
through invariant expressions that involve first- and sec-
ond-rank Cartesian tensors (Ii, nB0

, Xi, etc.) and have
one of two forms, x Æ A Æ y or x Æ y. Such expressions can
be also formulated in terms of the irreducible spherical
components of the same tensors [50–52,57–59]:

x � A � y ¼ A0;0B0;0 þ
X1

q¼�1

ð�1ÞqA1;�qB1;q

þ
X2

q¼�2

ð�1ÞqA2;�qB2;q; ð20Þ
[i] [j]

1 In the current version of the program, this term is not allowed.

2 Although the chemical shift and the J-coupling tensors may possess
antisymmetric components, the effects of these components on the
NMR spectra are negligible.
3 Aaniso is sometimes denoted as dA, leading to an unfortunate

confusion with the symbol for the chemical shift. The term ‘‘anisotropy
of tensor A’’ is also used for the quantity DA, which is defined as
DA ¼ AZZ � 1

2 AXX þ AYYð Þ and related to Aaniso as DA ¼ 3
2Aaniso.
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x � y ¼
X1

q¼�1

�1Þqx1;�qy1;q;
�

ð21Þ

where Alq, Blq, x1,q, and y1,q are the irreducible spherical
components of tensors Aab, xayb, xa, and ya, respectively.
In general, we will use the symbols Xi

2;q, D
ij
2;q, etc., to de-

note the second-rank spherical components of tensorsXi,
Dij, etc. The first-rank (antisymmetric) components of
these tensors can be neglected in the secular
approximation.

The spherical components are particularly convenient
for expressing the Hamiltonian in the rotating frame and
obtaining its high-field, or secular, approximation, which
is the form currently assumed for the Hamiltonian in
SPINEVOLUTION. The rotating frame is an interaction
representation defined in the program by the interaction
term

H 0 ¼
X
k

xk
� þ xk

off tð Þ
� �

F kz; ð22Þ

where the z-axis is chosen in the direction of the static
magnetic field B0. For the spins of species k, the frame
rotates continuously about the direction of B0 with the
angular frequency xk

� þ xk
off tð Þ, which is the instanta-

neous angular frequency of the on-resonance circularly
polarized RF component (Eq. (10)). The continuity of
rotation implies that the frame moves without jumps at
all times. Note that, to avoid ambiguity, the frequency
offsets must be defined even in the absence of an RF field.

In the high-field approximation, the rotating frame
Hamiltonian is given by the sum of the following terms:

H ¼ HRF þ HCS þ HD þ H J þ HQ; ð23Þ
where:

HRF ¼
X
k

xk
RF tð Þ

�� �� F kx cos/k tð Þ þ F ky sin/k tð Þ
� �

; ð24Þ

HCS ¼
X
i

Xi
iso þ

2ffiffiffi
6

p Xi
2;0 tð Þ � x i½ �

off tð Þ
� 	

I iz; ð25Þ

H J ¼
Xhomo

i<j

2pJ ij
isoIi � Ij þ

Xhomo

i<j

2pJ ij
2;0ðtÞ

1ffiffiffi
6

p ð3I izI jz � Ii � IjÞ

þ
Xhetero
i<j

2pJ ij
isoI izI jz þ

Xhetero
i<j

2pJ ij
2;0ðtÞ

2ffiffiffi
6

p I izI jz; ð26Þ

HD ¼
Xhomo

i<j

Dij
2;0 tð Þ 1ffiffiffi

6
p 3I izI jz� Ii � Ij

� �
þ

Xhetero
i<j

Dij
2;0 tð Þ 2ffiffiffi

6
p I izI jz;

ð27Þ

HQ ¼
X
i

2pvi
2I ið2I i � 1Þ

~V
i
2;0ðtÞ

1ffiffiffi
6

p ð3I2iz � I2i Þ

þ 1

2xi
0

2pvi
2I ið2I i � 1Þ

� �2

~V
i
2;2ðtÞ

��� ���2ð2I2i � 2I2iz � 1ÞI iz
�

� ~V
i
2;1ðtÞ

��� ���2ð4I2i � 8I2iz � 1ÞI iz
	
. ð28Þ

All tensor quantities in these equations must be given
in the laboratory reference frame with the z-axis par-
allel to the static magnetic field. The anisotropic inter-
actions (Xi, Dij, Jij, Vi) are known in the crystallite
(molecular) frame and thus must be properly trans-
formed. In MAS experiments, where the sample is
spinning about an axis that makes angle
hM ¼ arccos

ffiffiffi
3

p �1 � 54:74� with the static magnetic
field, the following sequence of transformations is
used: Pfi Cfi R fi L, where P, C, R, and L stand
for the principal, crystallite, rotor, and laboratory
frames, respectively. SPINEVOLUTION assumes that
the sample rotation proceeds in the positive direction
about the z-axis of the rotor-fixed frame, and that
XRL = (0, bRL, 0) at the time t = 0. This leads to
the following expression for the laboratory frame com-
ponents of the tensors:

A2;q tð Þ ¼
X2

k¼�2

A kð Þ
2;qe

ikxRt; ð29Þ

AðkÞ
2;q ¼

3ffiffiffi
6

p Aaniso Dð2Þ
0k ðXPRÞ�

gAffiffiffi
6

p Dð2Þ
2k ðXPRÞþDð2Þ

�2kðXPRÞ
h i� 	

�dð2Þ
kq ðbRLÞ; ð30Þ

D 2ð Þ
km XPRð Þ ¼

X2

q¼�2

D 2ð Þ
kq XPCð ÞD 2ð Þ

qm XCRð Þ; ð31Þ

where D 2ð Þ
km Xð Þ and d 2ð Þ

km bð Þ are the Wigner and the reduced
Wigner rotation matrices.

Once the Hamiltonian is defined as given by Eqs. (23)–
(28), SPINEVOLUTION solves either the Liouville–von
Neumann equation

d

dt
q tð Þ ¼ �i H tð Þ; q tð Þ½ � ð32Þ

x

y

z

x'

y'

z'

N

α γ

β

Fig. 1. The definition of the Euler angles.

252 M. Veshtort, R.G. Griffin / Journal of Magnetic Resonance 178 (2006) 248–282

ARTICLE IN PRESS



or the master equation

d

dt
q tð Þ ¼ �i H tð Þ; q tð Þ½ � � Cðq tð Þ � qeqÞ ð33Þ

for a specified initial condition q (0) = q0. In the current
version of the program, the relaxation supermatrix C
must be provided explicitly. The final goal of the simula-
tion is to compute the ensemble averages of one or more
observables Ql (i.e., the signal)

Sl tð Þ ¼ Tr q tð ÞQl

� �
ð34Þ

or, equivalently, their Fourier transforms.
In most solid-state NMR experiments, the results

must be averaged over all possible crystallite orientations
in the sample. If the sample is an isotropic powder, then
the average is given by the integral

�Sl tð Þ ¼ 1

8p2

Z 2p

0

da
Z p

0

db sin bð Þ
Z 2p

0

dcSl a; b; c; tð Þ;

ð35Þ
where the Euler angles (a, b, c) specify the Cfi R rota-
tion in MAS experiments, and Cfi L rotation in static
experiments. The integral is readily approximated by a
variety of finite ‘‘powder averaging schemes’’ [60–65]. If
the sample is partially oriented, the signal under the inte-
gral must be multiplied by a proper weighting function,
and the powder averaging scheme must be appropriately
modified. If pulsed field gradients are used in the exper-
iment, the signal is additionally averaged over a number
of ‘‘gradient slices’’ to approximate the integral

��Sl tð Þ ¼ 1

L

Z þL=2

�L=2

�Sl z; tð Þdz; ð36Þ

where L is the sample length along the gradient axis.

3. Canonical representation of NMR experiments

In an NMR experiment, each data point is acquired by
observing the magnetization of the sample after it has
been subjected to a certain sequence of RF pulses and
delays. In other words, each point is obtained at the
end of a certain RF path. The pulse sequence of the exper-
iment can then be thought of as an ordered collection of
such RF paths. In experiments, a pulse program is used to
instruct the spectrometer to generate these paths. In a
simulation, one usually has to write a program that
describes (algorithmically) which propagators have to
be computed and how they need to be manipulated in
order to emulate the desired pulse sequence (as is the sit-
uation, for example, with GAMMA and SIMPSON).

In order to avoid programming, the RF paths compris-
ing the pulse sequence of the experiment can be (most
naively) treated as a set of independent, uniform sequenc-
es of time events—pulses and delays. Although most gen-
eral and non-algorithmic, such representation has

virtually no structure and is very difficult to use for the
construction of efficient simulations thatmust take advan-
tage of various time symmetries of the Hamiltonian dur-
ing the experiment. Fortunately, NMR pulse sequences
typically follow certain established patterns, which can
be readily described by means of a simple, well-structured
set of variables that does encapsulate the periodicity of the
experiment and can be readily explored for the construc-
tion of efficient propagation schemes. Such description is
the primary purpose of the canonical representation for-
mulated below. In the present paper, the representation
is used mostly as the formalism behind the SPINEVOLU-
TION interface. However, it will be also heavily relied on
for the analysis ofMASNMR experiments when the algo-
rithms used in the program are described at a future date.

The basic structural unit of the pulse sequence of an
NMR experiment in the canonical representation is an
elementary pulse sequence, or simply pulse sequence. It
is defined as a contiguous group of one or more RF
pulses (the RF cycle of the sequence) that is character-
ized by a certain sampling pattern. Each pulse in the
group has a fixed duration, power, phase and frequency
(delays are described as pulses given with zero RF
power). A pulse sequence is executed by the periodic
repetition of its RF cycle for a certain amount of time
(an example is shown in Fig. 2A). The sampling pattern
of the sequence specifies its sampling rate, sampling

dimension, and sampling direction, all of which are
explained below. When more than one RF channel is
active in the experiment, the pulse sequence is represent-
ed by an individual RF cycle on every channel. The
duration of the RF cycle and the sampling pattern are
the same for all channels, but the break-up into individ-
ual pulses within the RF cycle is independent on each
channel. Pulsed field gradients, if present, add yet
another channel to the pulse sequence, and are
described using exactly the same formalism, except that
the pulses constituting the PFG cycle are given by their
durations and field gradients.

The pulse sequence of the experiment is described as a
linear collection of elementary pulse sequences, meaning
that each RF path of the experiment is generated by exe-
cuting these sequences one after another. The order in
which the elementary pulse sequences are executed is
always the same in a given experiment, and the sequences
are numbered 1 to S according to that order. Each data
point is acquired by taking a measurement after the last

pulse sequence was executed.
The execution time of every pulse sequence s on the

RF path to any data point is always a multiple of a
period s(s) called the dwell time of the sequence. (Thus,
the pulse sequences are sampled periodically.) Let t sð Þ

seq

denote the length of the RF cycle of the pulse sequence
s. Then, the ratio g sð Þ ¼ t sð Þ

seq=s
sð Þ will be called the sampling

rate of the sequence. To keep the sampling of the
sequence and its RF field synchronized, we require that
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either g(s) or 1/g(s) is an integer.4 In the former case, g(s) is
the number of sampling points per one RF cycle of the
sequence (Fig. 2B). In the latter case, the integer
G(s) = 1/g(s) will be called the group size, and, since

s sð Þ ¼ t sð Þ
seqG

sð Þ, we will say that the pulse sequence is
repeated in groups of size G(s) (Fig. 2C). Most commonly,
however, g(s) = G(s) = 1, and the pulse sequence is sam-
pled at the end of every RF cycle.

Any segment of the pulse sequence between two adja-
cent sampling points (potential endpoints of the sequence
execution, Figs. 2B and C) will be referred to as a sam-

pling segment. Each data point is obtained by executing
N(1) sampling segments of the first pulse sequence, N(2)

segments of the second, etc., up to the N(S) segments of
the last sequence. The set of S numbers N(1). . .N(S),
which will be called repeat numbers, fully identifies the
exact RF path leading to this data point.

The complete set of the data points of the experiment is
generated by changing the repeat numbers according to a
certain pattern. To specify this pattern, each pulse
sequence is assigned to a dimension of the experiment. A
sequence assigned to the dimension i will be called a Di

sequence (e.g., D0, D1, or D2 sequence). All sequences
assigned to the same dimension change their repeat num-
bers simultaneously. The pulse sequence is incremented in
the dimension i if its repeat number is changed starting
from zero and going up to Ni � 1 along the dimension.
The sequence is decremented in the dimension i if its
repeat number starts from Ni � 1 and goes down to zero
along the dimension. The process is illustrated in Fig. 2D.
Sampling the dimension in this manner generates a one-
dimensional set of Ni data points. The pulse sequences
that are executed with the same repeat numbers for every
data point are assigned to the zeroth dimension. Each
dimension is sampled independently (except for the zer-
oth dimension, of course, which is not sampled at all),
so that an n-dimensional pulse sequence generates an n-
dimensional array of data (Fig. 2E).

What we have just described is an n-dimensional pulse

sequence. However, individual dimensions ofNMRexper-
iments can sometimes be constructed in a way that does
not fit into the description above, which necessitates the
notion of a parameter scan dimension. Such a dimension
is constructed by declaring a scan parameter and allowing
other variables of the experiment to become functions of
this parameter. Without loss of generality, one may
assume that the scan parameter is just the index of that
dimension, li, which is scanned from 0 toNi � 1. The vari-
ables that depend on this parameter can then be as simple
as the sample spinning frequency, or as complicated as the
set of powers that define a shaped pulse, making the shape
change in this dimension. The parameter scan dimensions
are also sampled independently from each other and from
the dimensions of the pulse sequence. Altogether, the
parameter scan dimensions and the pulse sequence dimen-
sions form the dimensions of the experiment.

As clear from the description above, non-D0 pulse
sequences are periodic by definition. In MAS experi-
ments, however, the pulse sequences must also be rotor-

synchronized so that the efficient periodic algorithms

4 More generally, the sampling rate can be a rational number, but this
generalization seems to have little practical value.

S1

S1

S1 S1 S1

S1

...

B

D

C

S S S S SS

S S S S SS

E

1H

13C

A

...

...

k = 0

k = 1

k = 2

k = 6

S2 S2 S2
S2 S2S2

S2 S2 S2
S2 S2

S2 S2 S2
S2

S1
k = 3 S2 S2

S2

tseq
( s )

tseq
( s )

tseq
( s )

3τ ( s ) = tseq
( s )

τ ( s ) = 2tseq
( s )

τ ( s )

τ ( s )

τ ( 2) = tseq
( 2) τ ( 4 ) = tseq

( 4 )

t1 = kτ ( 2) t2 = lτ ( 4 )tseq
(1) tseq

( 3)

Fig. 2. (A) Execution of six RF cycles of an elementary pulse sequence;
the RF cycle is indicated with the dashed lines. (B) Pulse sequence
sampling. An elementary pulse sequence is always executed from the
start of its RF cycle to one of the sampling points (marked with the
thick dots). In the figure, the RF cycle is symbolically represented as the
block S; the dwell time s(s) is one-third of the RF cycle, implying that
the sampling rate g(s) = 3. (C) The same sequence is sampled with the
group size G(s) = 2 (i.e., g(s) = 1/2). (D) The RF paths of a constant-
time, one-dimensional pulse sequence composed of two elementary
pulse sequences. Both sequences are sampled in the same dimension; the
first sequence is incremented, with two sampling points per RF cycle
(g(1) = 2); the second is decremented; s(1) = s(2). The pulse sequence
generates 7 data points (k is the point number). (E) A two-dimensional
experiment (COSY [66]) composed of four sequences: 1 and 3 are D0
sequences, 2 is a D1 sequence, and 4 is a D2 sequence. The RF path
shown leads to the data point (k, l).

254 M. Veshtort, R.G. Griffin / Journal of Magnetic Resonance 178 (2006) 248–282

ARTICLE IN PRESS



could be used for their propagation. We will say that the
pulse sequence s is rotor-synchronized if the following
fundamental condition is satisfied:

n sð Þ � t sð Þ
seq ¼ m sð Þ � sR; ð37Þ

where n(s) and m(s) are some small positive integers, t sð Þ
seq is

the duration of the pulse sequence cycle, and sR is the ro-
tor period. The symmetry numbers n(s) and m(s) are
unambiguously fixed by the additional requirement that
they are relatively prime, i.e., have no common divisors
except ±1. The Hamiltonian of such a sequence has a
period extending over n(s) cycles of the sequence or,
equivalently, over m(s) rotor cycles. Eq. (37) essentially
requires only that t sð Þ

seq=sR is a rational number. The spe-
cific meaning of the ‘‘smallness’’ of the integers n(s) and
m(s) may depend on the context.

Although most of the terms defined above are very
familiar, their precise meanings in the context of the
canonical representation may differ from the broader
semantic range assumed by these terms in NMR litera-
ture. Thus, we would like to emphasize some of these
unconventional aspects of the representation. Perhaps,
the most important one is the central notion of the ele-
mentary pulse sequence as the basic structural unit of
the pulse sequence of the experiment. The latter is repre-
sented simply as a dynamic sequence of these units, each
characterized by its own periodicity and sampling
parameters. This is quite different from the conventional
viewpoint, where the constituent pulse sequences of an
NMR experiment are regarded as modules that accom-
plish a certain task, such as evolution or transfer of
coherences. Furthermore, the manner or the order in
which the data points are obtained has no relevance in
the canonical representation, while it is very relevant
experimentally (one-dimensional data sets are usually
obtained in a single transient). The canonical representa-
tion also introduces the notion of the zeroth dimension,
makes no distinction between pulses and delays, and
does make a distinction between the dimensions generat-
ed by the pulse sequence and those generated by a gener-
al parameter scan.

4. SPINEVOLUTION methodology

SPINEVOLUTION is designed as an application pro-
gram rather than as an API, thereby relieving the user
from any programming, including the pulse program-
ming. In part, this is accomplished by using the canonical
representation to represent the pulse sequences. The pro-
gram relies on this representation both externally—as a
part of the interface, and internally—as the means by
which the simulation is constructed. The user may, and
sometimes has to direct the program to employ one or
another computational technique for some aspect of the
simulation, but the details of the computation are always

left to the program. For the most part, the program itself
is able to choose the most efficient way to perform the
simulation. Such methodology enables simultaneously a
very simple interface and an almost unlimited internal
flexibility to analyze the problem, organize the data,
and choose the algorithms for the computation in the
most efficient manner. Currently, some of these choices
are predefined as functions of the pulse sequence and of
the spin system, while others are made on the fly, contin-
gent on the combination of various factors, such as the
size of the Hamiltonian, or certain characteristics of the
hardware (CPU and memory) on which the program is
running. The user is not required to understand the
details of the computational methods employed in the
simulation. However, a general understanding of the
basics is still desirable. In particular, one has to choose
the most appropriate description of the pulse sequence,
specify the powder averaging scheme, and decide if relax-
ation must be included in the model. These choices will
affect the efficiency and, sometimes, even the correctness
of the simulation. If the choices are blatantly inappropri-
ate, SPINEVOLUTION will usually advise the user
about this. The interface permits extensive checking for
inconsistencies on the input, which facilitates detection
of these ‘‘user errors,’’ adding significantly to the conve-
nience and reliability of the program.

The code of the program is written in C and highly
optimized. In addition, extensive uses are made of vari-
ous numerical libraries and source code packages [67–
77]; the latter are coded mostly in FORTRAN.

The main input to the program is provided by the
main input file, a plain text file edited by the user from
a template. This file may be either self-contained, or
may refer to other files with information about the spin
system, pulse sequences, various variables and expres-
sions, powder averaging angle sets, and other details of
the simulation. In this way, the same pulse sequence
and parameter files can be used to construct new simula-
tions. The interface is also well suited for use with the
system shell, Pearl, MATLAB, and other scripts.

The pulse sequences are specified through the pulse
lengths, powers, phases and frequencies of each pulse
and the repeat pattern of the sequence. The dipolar inter-
actions are automatically computed from the atomic coor-
dinates, which may be specified either explicitly or
through internal coordinates (internuclear distances,
bond angles, torsion angles, andmolecular fragment rota-
tions and translations). Any part of the dipolar, chemical
shift or RF term can be turned on or off during any part of
the experiment. Groups of atoms can be specified to
undergo infinitely fast exchange. Variables in SPINEVO-
LUTION provide a way to calculate the spin system and
pulse sequence parameters from expressions provided by
the user, perform parameter scans, data fitting, and other
tasks. The default course of the computation can be mod-
ified by means of the command line options.
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The output of the program is normally saved as a
table of data points into a simple text file or files. No
tools are provided with the program to visualize these
data since a number of excellent software packages,
both commercial and non-commercial, are widely avail-
able to suit everyone�s personal preferences. We use
Grace (URL: http://plasma-gate.weizmann.ac.il/Grace/)
and MATLAB (MathWorks, Natick, MA) for these
purposes.

The following introductory examples illustrate the
description of pulse sequences in SPINEVOLUTION.
First, consider a p/2 pulse followed by acquisition. In
the canonical representation, this is a one-dimensional
experiment composed of two pulse sequences: a p/2 pulse
(a D0 sequence) and a delay (a D1 sequence). If, for
example, the pulse takes 5 ls, the dwell time during
acquisition is 20 ls, and 1024 points are to be collected,
the sequence is described in the main input file by the fol-
lowing four self-explanatory lines:

timing(usec)   5   (20)1024
power(kHz)     50   0 
phase(deg)     0    0 
freq_offs(kHz) 0    0 

A much more sophisticated experiment—a double
quantum filter using the SPC-5 recoupling sequence
[78] in solids—still looks almost as simple:

timing(usec)  (spc5.pp)41 (spc5.pp)41 5 
power(kHz)     *           *         50 
phase(deg)     *           *        90 
freq_offs(kHz) *           *          0 
phase_cycling  *          1234        * 3131(RCV)

Here, spc5.pp is the name of a file that describes the
repeated element (the RF cycle) of the SPC-5 pulse
sequence; the file itself is just a table of the durations,
powers, phases, and frequencies of its 30 constituent
pulses. The asterisks instruct the program to load the val-
ues from the file. The experiment goes through a four-
step phase cycle (each pulse sequence is phase-cycled as
a whole). No phase cycling is requested for the first
and the third sequences (indicated by the asterisks), while
the second sequence and the receiver are cycled as (x, y,
�x, �y) and (�x, x, �x, x), respectively. The timing line
indicates that this is a one-dimensional experiment com-
posed of three pulse sequences, with the first two repeat-
ed from 0 to 40 times (incremented simultaneously),
yielding 41 data point in the dimension.

The simplest example of a two-dimensional experiment
is the basic COSY sequence [66], p/2 – (t1-evolution) – p/2
– (t2-evolution). Assuming 5 ls p/2 pulses and 20 ls dwell
times in both dimensions, the timing line that specifies the
four pulse sequences of this experiment is

timing(usec) 5 (20)1024D1 5 (20)1024D2 

It may seem unusual at first, but zero-dimensional
experiments (those composed of D0 pulse sequences
only) are very common in simulations. Indeed, the
acquisition dimension of the actual experiment is often
used only to observe the intensity of the single-quantum
coherences for each spin resulting from the prior evolu-
tion of the spin system. In simulations, however, an
FID does not have to be recorded to acquire this infor-
mation. Instead, one can simply compute the traces of
the density matrix with the appropriate observables.
Thus, 1D experiments can often be simulated as zero-
dimensional, while 2D experiments—as one-dimension-
al (as in the SPC-5 double quantum filter example
above).

The dimensionality of a simulation (the total number
of dimensions in the data output) can be larger than the
dimensionality of the pulse sequence. Additional dimen-
sions can come from two other sources: a parameter scan
(as explained earlier) and a ‘‘trajectory observation.’’ In
the latter case, measurements are made after every pulse
of the zero-dimensional pulse sequence, thus registering
the whole trajectory of the observable rather than just
the last point. Currently, SPINEVOLUTION allows up
to two-dimensional simulations. However, if the spins
are observed individually rather than as a channel, this
effectively gives an equivalent of yet another dimension.

A number of computational techniques exploit the
periodicity and the time-c-translational symmetry
[25,47,49] of the Hamiltonian to make NMR simulations
more efficient. Obviously, these algorithms can be used
only for the parts of the experiment that exhibit such
symmetries. In SPINEVOLUTION, all calculations
within the pulse sequence dimensions are performed by
means of such algorithms, while the calculations within
dimensions produced by a parameter scan are performed
completely independently from one another. Let us once
more consider the example of a p/2 pulse followed by
FID acquisition. It is, of course, possible to formulate
this experiment as a zero-dimensional pulse sequence
with a parameter scan. Namely, one can say that it con-
sists of the p/2 pulse followed by the ns-long delay, where
n is a scan parameter, which is scanned from 0 to 1023. In
this case, however, the relationship between the propaga-
tors necessary to compute the FID is obscured. SPIN-
EVOLUTION will recover some of the symmetry from
such a pulse sequence by breaking up the delay into small
periodic segments (assuming that this is a MAS experi-
ment), using the periodic algorithms to compute the total
propagator, and repeating this procedure for each n.
However, the computation will not be nearly as efficient
as it could have been if the experiment were formulated
as one-dimensional. One should also keep in mind that
a non-periodic problem can usually be replaced with a
very similar, experimentally indistinguishable periodic
problem. Taking advantage of this simple fact is com-
pletely at the user�s discretion.
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5. Performance of SPINEVOLUTION

Two examples were chosen to illustrate the perfor-
mance of SPINEVOLUTION. In both cases, the same
simulation problems were solved with our program and
with SIMPSON [39], and the results compared.5 The first
example we chose is the simulation of the line shape of a
single 13Cnucleus coupled to 1–9 protons (Fig. 3) observed
using the TPPM decoupling [79]. The TPPM decoupling
sequence is a windowless train of constant-power, approx-
imately 180� pulses with phases alternating between 0 and
/, where / is usually in the range of 12–18�. The details of
the simulation are given in the footnotes to Table 1. Both
SPINEVOLUTION and SIMPSON used the same top-
level algorithm (c-COMPUTE [47–49]) to perform these
simulations. The CPU time taken by the simulation is
indicative of the performance of the many components
the algorithm relies on: integration of the equation of
motion routines, matrix diagonalization routine, matrix
multiplication, fast Fourier transform, etc.However,most
of the CPU time is spent in this case on the integration of
the equation of motion, which is performed by the Cheby-
shev expansion algorithm in SPINEVOLUTION, and via
matrix diagonalization in SIMPSON.

The spectra produced by SIMPSON and SPINEVO-
LUTION were identical and exhibited a single narrow
line for all spin systems. However, the efficiency of the
calculation turned out to be dramatically different for
the two programs, as shown in Table 1. For the small
spin systems, SPINEVOLUTION was about two orders
of magnitude faster than SIMPSON. The difference in
the efficiencies quickly increased with the system size,
reaching a factor of 3300 for the 7-spin system. A graph-
ical representation of these results is shown on the loga-
rithmic scale in Fig. 4.

It is remarkable that in the case of SPINEVOLU-
TION, the logarithm of the calculation time is practically
linear in the number of spins. The slope corresponds to a
factor of 6.3 increase in the computation time for each addi-
tional spin. These observations can be qualitatively under-
stood through the following rudimentary considerations.

All numerical routines can be classified according to
the manner in which the number of elementary arithme-
tic operations in the algorithm scales with the dimension-
ality of the problem. For example, matrix–matrix
multiplication and matrix diagonalization are O(n3) pro-
cesses, meaning that the number of arithmetic operations
performed by these routines is proportional to the third
power of the matrix dimensionality n. The most compu-

tationally intensive operations from this viewpoint, they
usually take most of the CPU time in NMR simulations.
Since the space dimensionality of an N-spin-1/2 system is
2N, the entire simulation is an O(23N) = O(8N) process if
it is dominated by these algorithms. The diagonalization
of a symmetric matrix takes approximately 3–15 times
longer to complete than a complex matrix–matrix multi-
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B

Fig. 3. (A) An iso-butyl group, the configuration used in the TPPM
simulations. The 13C nucleus is located at C2. 1H nuclei were added to
the spin system as numbered in the figure. (B) The carbon skeleton of
Leucine, the spin system used in the 2D correlation spectrum
simulation.

Table 1
CPU time (seconds) spent on the calculation of TPPM-decoupled 13C
spectra in the systems of 2 to 10 nucleia,b

Spin systema,c SPINEVOLUTION SIMPSON

CH1 0.13 8.8
CH2 0.33 19.1
CH3 1.27 73.4
CH4 6.16 638
CH5 35.0 13300
CH6 246 822000
CH7 1600 —
CH8 9460 —
CH9 60500 —

a Simulation parameters: spinning frequency xR/2p = 15.625 kHz;
RF field strength at the 1H channel xRF/2p = 125 kHz; TPPM pulses
were 4 ls long, alternating between 0 and 15� phases; the spins were
placed in the configuration of an iso-butyl group, with the 13C nucleus
positioned at the C2 location (Fig. 3A).
b Simulation methods (for both programs): stepwise Hamiltonian

integration in 1 ls steps; powder averaging over 168 (a, b) pairs from
the REPULSION set, and eight c angles, implicitly by the c-
COMPUTE algorithm. Calculations were performed using a Linux
PC with a 1.2 GHz Athlon CPU. The versions of the programs used
were SIMPSON 1.1.0 and SPINEVOLUTION 2.4.
c 1H nuclei were added to the system in order shown in Fig. 3A.

5 The input files used in these computations are included with the
other examples into the current distribution of the program. SPIN-
EVOLUTION was also briefly compared with BlochLib/Solid-2.0 by
simulating Rotational Resonance spectra of spin systems with 2 to 9
coupled spins. For these examples, SPINEVOLUTION was found 10–
90 times faster than BlochLib.
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plication. Hence, the larger the proportion of the diago-
nalization operations, the slower the calculation.
Furthermore, if these routines are implemented ineffi-
ciently, for large matrices, execution time will be deter-
mined by the speed of the data transfer to and from
the main memory of the computer rather then the speed
of the processor, leading to significant losses of efficiency.
This seems to be the situation with SIMPSON, which is
much slower than one would expect from the O(8N) rule
(Fig. 4). The computation time is apparently dominated
here by the diagonalizations of the Hamiltonian
employed to integrate the equations of motion. SPIN-
EVOLUTION, on the other hand, never diagonalizes
the Hamiltonian. Instead, the equation of motion is inte-
grated with a sparse matrix based algorithm that behaves
asymptotically as O(N24N). It should be noted, however,
that reaching the theoretical asymptotic performance of
sparse matrix algorithms is practically impossible in
actual computations. In addition, for most of the values
of N in the example, a significant fraction of the compu-
tation time is still given to matrix-matrix multiplications.
The resulting total CPU time then depends on a combi-
nation of O(N24N), O(8N), and perhaps other terms,
apparently leading to the observed 6.3-fold increase per
spin in the simulation time observed for the larger sys-
tems. For N = 2 and N = 3 cases, the increase in the
CPU time is not as steep since the contribution from
O(4N) processes, like matrix–matrix addition, is signifi-
cant for such small matrices.

In the second example, we simulated a 2D MAS
13C–13C correlation spectrum of the Leu fragment of
the uniformly (15N, 13C)-labeled N-Ac-Val-Leu peptide
molecule. Perfect decoupling from the 1H nuclei was
assumed, making it a six-spin computation, with the spin
system shown in Fig. 3B. The pulse sequence is given lat-

er, in Example 6; other details of the simulation are pro-
vided in Fig. 5.

The calculation required 10 h of CPU time on a 1 GHz
Pentium 3 computer. The entire simulated spectrum is
presented in Fig. 5A. The (b,c,d)-region is shown in detail
as a surface plot in Fig. 5B. The simulation was per-
formed using regular matrix multiplication for propaga-
tion in the first dimension, while the g-COMPUTE
algorithm was employed in the second. Such a combina-
tion of methods makes the calculation time proportional
to the number of points taken in the first dimension, but
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Fig. 4. Decimal logarithm of the CPU time taken by the simulations of
TPPM-decoupled 13C spectra (see Table 1).
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Fig. 5. Simulated 400 MHz 13C chemical shift 2D correlation spectrum
of the 6-spin Leu fragment of U-[15N,13C]-N-Ac-Val-Leu (Fig. 3B):
contour plot (A) and (b,c,d)-region detail (B). The pulse sequence is
shown in Example 6 below (Fig. 11). Perfect heteronuclear decoupling
and ideal p/2 pulses were assumed. 2048 points were collected in the
indirect dimension with 48 kHz spectral width; cosine transform was
applied to obtain a pure phase spectrum. 1024 points were collected
with 24 kHz spectral width in the direct dimension. Other simulation
parameters: chemical shifts as seen in the spectrum, 40 Hz isotropic J-
coupling for directly bonded nuclei, xR/2p = 8.0 kHz, smix = 2 ms,
60 Hz Gaussian line broadening, powder averaging over 100 (a,b) pairs
and 12 c angles. The surface shown in (B) was obtained by a 2D-spline
interpolation of the simulated spectrum.
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independent of the size of the second. The advantage of
this scheme can be illustrated by attempting to simulate
this experiment with SIMPSON, which cannot use its c-
COMPUTE for such problems. The CPU time such a
simulation would require was estimated by performing
it for smaller numbers of sampling points n in each dimen-
sion and without powder averaging. The time required by
the computation must be a second order polynomial of n.
In full agreement with this expectation, all data points for
n ranging from 2 to 64 were fit perfectly by such a polyno-
mial. Extrapolation to n = 1024 and including a factor
that accounts for the powder averaging yielded 38 years
of CPU time, which is 33,000 times longer than for the
simulation performed with SPINEVOLUTION.

6. SPINEVOLUTION interface

6.1. Main input file

The main input file is a text file that has four sections:
System, Pulse sequence, Variables, and Options (see the
examples below). Each line of the file has a fixed one-
word header descriptive of the information to be specified
on this line. The information must be provided according
to a certain format. The formats are line-specific, but a
few rules summarized below apply to all of them.

Spaces or tabs are used to separate different entries on
a single line. Parentheses, brackets, colons, and other
special symbols may be used only in compliance with
the format specifications. Text lines are separated from
each other by the new line character (ASCII code 10, also
known as nn, LF, or the line feed character), which is the
standard accepted by all Unix-based simple text editors
(see –convert option for help with formats conver-
sion). If the information requested on the line is irrele-
vant in the context of the experiment, or if the default
values should be used, the line should be marked with
an asterisk. Most lines can be ended with a comment that
begins with an asterisk. This can be used, for example, to
comment out the content of the line instead of erasing it.

In general, the order of the lines in the main input file
cannot be changed, and none of the lines can be omitted
from the file. There are a few exceptions from this rule.
The csa_parameters, j_coupling, and
quadrupole lines can be repeated as many times as
necessary to describe all pertinent interactions; however,
each of these lines should appear at least once. The num-
ber of the CHN subsections in the file varies according to
the number of channels in the experiment. The phase
cycling lines on each channel are optional. The Variables
section has no mandatory lines, but the lines that do
appear in it should be arranged in the order desired for
the computation of the variables they define.

The following notation is employed to specify the
input formats (particularly in the Tables A1–A3). The
part of the format printed in bold should appear in the

input file exactly as it is printed in the text. An italicized

group of characters shows a variable part of the con-
struct, the information that must be provided by the user.
The vertical bar | and the operator OR separate the alter-
native forms of the construct. Braces around a group of
items separated by vertical bars show that one of the
items must be chosen. Square brackets around a con-
struct show that the construct is optional. Three dots
(an ellipsis) mean that the immediately preceding con-
struct may be repeated one or more times. Examples, file
names, etc. are printed using a fixed-width font. A
detailed description of the main input file formats is giv-
en in the Table A1. Command line options and internal
variables are described in Tables A2 and A3.

6.2. Variables

Variables play a versatile and important role in the
SPINEVOLUTION interface. A variable can be assigned
a value calculated from an arbitrary expression involving
numerical constants, other variables, and functions there-
of. A variable can be scanned through a certain list of val-
ues, adding a new dimension to the experiment.
Alternatively, the results of the scan can be added up to
form a weighted average. Variables also provide a flexible
framework for data fitting and optimization.

Any name declared in the Variables section of the
input file refers to either internal or a user-defined
variable. Internal variables (Table A3) affect the
system parameters (typically the Hamiltonian) directly,
while user-defined variables can affect the results of
the simulation only through internal variables that
depend on them. Some internal variables (e.g.,
spinning_freq or pulse_n_s_p) provide an alterna-
tive way of referencing parameters that are normally
specified in the System, the Pulse Sequence, and the
Options sections of the input file, while others provide
a unique access to certain features of the program (e.g.,
relaxation parameters or torsion angles). The value
assigned to an internal variable overrides the value of
the corresponding parameter specified in the System or
the Pulse Sequence sections. All internal variables have
names containing at least one underscore character to
distinguish them from the user-defined variables, while
the latter may be given any names composed of letters
and numbers that begin with a letter.

Other than being internal or user-defined, each vari-
able is also characterized by its type, which is determined
by the way the variable was declared (see Table A1), and
determines the way the variable behaves during the sim-
ulation. A variable can be of an active type (fit parame-

ter, scan parameter, and average-over parameter), or of
a passive type (the subtypes of which are distinguished
only internally).

Declaring an active variable directs SPINEVOLU-
TION to invoke the appropriate control block. In partic-
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ular, declaring a fit parameter invokes data fitting, declar-
ing a scan parameter creates a scan parameter dimension
in the experiment, and declaring an average-over param-
eter creates a ‘‘virtual’’ parameter scan dimension—all
computed data points are eventually summed (or aver-
aged with some weights) over this dimension. Every scan
and average-over parameter is assigned a list of values (see
Table A1 footnotes) when declared. These are the values
sequentially assigned to the parameter during the scan. A
fit parameter may also be (optionally) assigned a list of
values, which specify in this case a grid of starting points
for the optimization. The values of the fit parameters are
controlled by the fitting routine.

A passive variable is declared by a line of the form

variable     name=expression

and is assigned the value obtained by evaluating the
expression. Expressions may involve any previously de-
clared passive or active variables, numeric values, the
pi constant, the elementary algebraic operations
(+ - * /), and a number of other functions (Table
A4). The algebraic operations are left-associative (mean-
ing that a/b/c=(a/b)/c). Alternatively, variables can
be declared from the command line by means of the
-var option (such variables are evaluated prior to the
variables declared in the main input file). This option is
particularly useful for running batch simulations from a
shell script, since it does not require editing of the main in-
put file. If the variable is internal, itmaybe referenced from
any expression without prior declaration. The initial val-
ues of the fit parameters can be assignedwith the same syn-
tax (the variable statement or the –var option).

If the expression of the variable is not dependent,
directly or indirectly, on any active parameter, then the
value of this variable is computed only once (when the
variable is initialized) and remains constant for the rest
of the simulation. Other passive variables are re-evaluat-
ed from their expressions whenever the active variables
that they depend on are changed. Variables are always
evaluated in the order in which they are declared.

A special ‘‘vectorized’’ notation can be used to create
and operate with a number of variables by means of a
one-line syntax. For example, the declaration

variable x[0:100]=a[0:100]*exp(-k*[0:0.01:1])+1.0 

actually stands for 101 different declarations:

variable x0=a0*exp(-k*0.0)+1.0 
… 
variable x100=a100*exp(-k*1.0)+1.0 

The individual declarations are obtained by substituting
each bracketed list of values with one of its components
taken in order from first to last.

Variables can be matrices as well as scalars. A row or
column matrix can be declared by the rowmatrix/
colmatrix statements (Table A1). A rectangular matrix
can be declared by the matrix statement (Table A1), or
it can be computed, for example, as a matrix product of a
column matrix by a row matrix, or by ‘‘reshaping’’ a row,
column, or another rectangular matrix. The individual
elements of an m-by-n matrix M can be referred to either
as M (i, j), with 1 6 i 6 m and 1 6 j 6 n, or as M (i), with
1 6 i 6 mn. Since the elements of a matrix are stored col-
umnwise (so-called FORTRAN convention), the element
M (i, j) can be also referenced as M (k) with
k = i + m (j � 1). The function reshape (M,m,n) returns
an m by n matrix, whose elements are taken columnwise
from the M�s storage array. For example, the statements

rowmatrix   M/0:0:10/ 

variable    A=reshape(M,2,5) 

variable    A(1,[1:5])=w*log(x[1:5])+B(1,1) 

declare a row matrix M, reshape it into A, and re-compute
the A�s first row via other, previously defined variables.

All the operations and functions defined for scalars
are defined for matrices by element-wise threading of
the operation or function. Element-wise multiplication
and division of two matrices is denoted as mul(A, B)
and div (A, B). Only two specifically matrix operations
are implemented at this point: matrix multiplication,
denoted as A*B, and the transpose, denoted as
transpose (A).

6.3. Relaxation, powder averaging, and internal

coordinates

When relaxation must be taken into account, SPIN-
EVOLUTION uses the master equation of motion (Eq.
(33)) instead of the Liouville-von Neumann equation.
In the current version of the program, the relaxation
operator matrix elements must be provided to the pro-
gram explicitly, in the Zeeman basis. Currently, no
cross-relaxation is allowed between off-diagonal elements
of the density matrix. Assuming a non-degenerate Ham-
iltonian, the later restriction amounts to the secular
approximation [53]. The required relaxation matrix ele-
ments are specified through the longitudinal and trans-
verse relaxation times for individual coherences and
corresponding transitions (T1 and T2 variables, Table
A3), which are defined as generalizations of the T1 and
T2 constants in the Bloch equations. A general matrix-
based interface will be also available for this purpose in
the next version of the program.

The user can choose between two relaxation models
built into the program (the choice of the model, as well
as the relaxation constants may vary from one pulse
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sequence to another within a single experiment). In the
‘‘simple’’ model, the density matrix is allowed to relax
after each RF cycle for a D0-sequence, or after each sam-
pling point for a D1 or D2-sequence. The relaxation con-
stants to be used with this model are, in general, effective
averages over the RF cycle of the sequence or the period
of the Hamiltonian. In amore general but also muchmore
intensive computationally ‘‘full’’ model, the density
matrix is allowed to relax after every integration step
(set by the –dt option), leading to the exact integration
of the equation of motion provided that the integrations
steps are sufficiently small. In both models, the actual
computations are often carried out via the Liouville-space
propagators. The equilibrium density matrix is always
defined as

qeq ¼
XN
i¼1

c i½ �

c 1Hð Þ
I iz. ð38Þ

The question of whether the chosen model is valid for
the experiment that is being simulated is left to the user.
In general, the simple model will not be applicable unless
the relaxation rates are much smaller than the size of the
effective Hamiltonian. In most cases, the simulation of
relaxation significantly slows down the calculation.

Powder averaging is an essential part of most solid-
state experiments. In the program, it can be performed
over (a,b,c), (b,c), (a,b), and (b) angle sets, with the
optional additional averaging over the angles that are left
out from the set. The two- and three-angle sets are pro-
vided as external text files, while the (b) sets are automat-
ically generated. Single-crystal calculations are also
possible. A comprehensive compilation of various angle
sets from the literature [60–62,64,65] collected by M.
Edén and M. Levitt is provided with the program. We
suggest consulting the URL http://www.soton.ac.uk/
~mhlgroup/ for an overview of this compilation, and
[65]—for a discussion of the symmetry implications on
the choice of the most appropriate set. At this point, it
is the user�s responsibility to make sure that the number
of crystallites in the powder averaging scheme chosen is
sufficient for the given problem. The convergence is usu-
ally established by trying angle sets of different sizes. A
much more advanced, fully automated approach to pow-
der averaging, which should supersede all of the above, is
also being developed.

As a complement or an alternative to the Cartesian
coordinates representation, SPINEVOLUTION provides
a general way of specifying the structure of the spin system
through internal coordinates—distances, bond angles,
torsion angles, and rotations and translations of individu-
al molecular fragments. In principle, any structure can be
completely defined solely in terms of these coordinates in
SPINEVOLUTION. The exact meaning of each internal
coordinate is defined in the System section of the main
input file (see Table A1 for details), while its value is set

in the Variables section. For example, the configuration
of a four-spin chain, can be completely parametrized
through the following lines in the System section:

bond_len_nuclei   (1 2) (2 3) (3 4)
bond_ang_nuclei (3 2 1) (2 3 4)
tors_ang_nuclei (1 2 3 4)

which define the bond lengths r12, r23, and r34, the bond
angles h321 and h234, and the torsion angle u1234. Then,
for example, the internal coordinates r12, r23, and h321
can be referred to in the Variables section as r_1,
r_2, and theta_1, respectively.

A definition of an internal coordinate turns the Carte-
sian atomic coordinates of certain nuclei (as well as the
CSA and quadrupole tensors fixed on these nuclei) into
functions that depend on the value of the corresponding
internal variable. The internal coordinates are ‘‘set’’ into
the spin system in the exact order they appear in the
System section of the main input file (this order may be
essential). This happens after all variables declared in
the Variables section, including the internal coordinates
themselves, have been calculated. Thus, any atomic coor-
dinates and interaction tensors can be set into the desired
‘‘initial state’’ through their direct variables prior to the
application of the internal coordinates. If the internal
variable corresponding to a given internal coordinate is
not declared, its value is left unchanged by the program;
however, this value is still measured and can be inspected
with the -s option.

6.4. The output and file naming conventions

The output of the program is produced in a text for-
mat with the real, imaginary, and/or longitudinal parts
of the magnetization saved in separate files. The names
of the output files are formed by appending _re.dat,
_im.dat, or _z.dat to the name of the main input
file. On the output of two-dimensional simulations,
where the spins are observed individually (rather than
as a channel), the data for each observed spin are saved
in separate files, with the spin number appearing
between the name of the input file and the automatically
added suffix, e.g., name1_re.dat. Each output file is a
zero-, one-, or two-dimensional data matrix, depending
on the experiment. The first column of the file labels the
rows of the matrix and is one of the following: time, in
milliseconds, frequency, in kilohertz, chemical shift, in
ppm, or the value of the scanned parameter. The output
produced by the -pwr option is saved in the name.pwr
file.

Several command line options exist that alter the
default behavior: -n sets a different base name for the
output files, –to transposes the output data matrices with
respect to their default arrangement, –x0 disables label-
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ing the output data matrix, –dw changes the way the time
label is calculated. See Table A2 for more details.

The user-supplied input files referenced from within
the main input file can be given any names that do not
contain white space characters. The references to these
files are understood as pathnames in the main input file,
i.e., they are allowed to contain a relative or the absolute
path to the file. We suggest the following (optional)
guidelines for naming the input files. The main input file
name should have no extension and be descriptive of the
nature of the experiment. The coordinates, isotropic
chemical shifts, CSA, j-coupling, and quadrupolar inter-
action files should have extensions. .cor, .cs, .csa,
.j, and .q, respectively. It is usually helpful to end each
line of these files with some comment that labels the
nucleus described at this line. Any non-numerical charac-
ter in these files is considered by the program as the start
of a comment that extends to the end of the line. Lines
that do not contain any parameters and consist of com-
ments only are also allowed in these files. The names of
the files that describe pulse sequences should have exten-
sions .tm, .pwr, .phs, or .frq if the file specifies,
respectively, only the timing, the powers, the phases, or
the frequency offsets of the sequence, while the .pp
extension should be used if the pulse program specifies
all four of them. The files that assign values or mathe-
matical expressions to variables should have the exten-
sion .par. The only exception from this free form
naming rule are the input files used for data fitting—
these are expected to have certain predefined names.

The following conventions are used for the files used
in the data fitting and optimization problems. If the
name of the main input file that specifies the problem is
name, then the to-be-fit data files are expected to have
the names name_re.fit, name_im.fit, and/or
name_z.fit, while the files with weights to be used
for each data point should be named as name_re.wht,
name_im.wht, and/or name_z.wht . The best-fit
parameters are saved on the completion of the fit in the
file name.par. See also the –n and –fn options (Table
A2), which may be used to provide alternative names
for these files. The covariance matrix of the fit parame-
ters and the confidence intervals are saved in the
name.cov and name.cls files if requested by the
–covmat and –confint options. The grid search jour-
nal is written to the name.jnl file. Assuming that x1,
x2, . . . xn are the fit parameters, each line of this file has
the following format:

RSS x01 x02 . . . x
0
n xmin

1 xmin
2 . . . xmin

n ;

where RSS is the residual sum of squares at the local
minimum point xmin

1 ; xmin
2 . . . xmin

n

� �
, which was obtained

by starting the minimization from the x01; x
0
2 . . . x

0
n

� �
point

on the grid.

6.5. Running SPINEVOLUTION

The program is started by issuing

spinev inputfile [options]  

at the system prompt. For best performance, SPINEVO-
LUTION should be configured for the machine it will be
run on (see –autoconfig option).

Before running an actual simulation with a newly edit-
ed input file, it is advisable to perform a dummy run with
the option –s. This option causes SPINEVOLUTION to
load all necessary files, prepare for the simulation, and,
instead of performing the calculation, print the loaded
information to the terminal as it was interpreted and pro-
cessed by the program.

Unless the full pathname to the angle set for powder
averaging is given in the input file, the file will be looked
for in the directory specified by the environment variable
ANGLES. In the Linux bash shell, this variable can be set
by issuing

export ANGLES=/usr/local/NMR/spinev/angles 

assuming that the directory containing the Euler angle
sets is /usr/local/NMR/spinev/angles. In tcsh
shell, setenv command should be used instead:

setenv ANGLES /usr/local/NMR/spinev/angles

The location of the configuration file spinev.cfg and
of the on-line help manual should also be specified to the
program by setting (in the same way as above) the envi-
ronment variable SPINEV to the SPINEVOLUTION
home directory, where these files are contained. This
directory should be also added to the system path. It
is convenient to put all these definitions into a shell
script automatically executed at login time (e.g.,
.bashrc or .cshrc).

Simulations that involve powder averaging can be
parallelized on multi-processor machines or computer
clusters configured to support automatic process migra-
tion (see option –split).

7. Examples

Examples in this section are provided, in part, to
illustrate the relevance of the program for contempo-
rary NMR research, but mostly—to demonstrate the
proper use of various features of the program. If one
desires to quickly become acquainted with most of
these features, it is recommended to look through all
of these examples, even if their NMR content is of lit-
tle interest to the reader. Tables A1–A3 should be con-
sulted throughout this section to clarify the details.

262 M. Veshtort, R.G. Griffin / Journal of Magnetic Resonance 178 (2006) 248–282

ARTICLE IN PRESS



7.1. CSA powder pattern

The simulation of a CSA powder pattern is a very sim-
ple calculation, with the spin system consisting of only
one nucleus, the CSA as the only interaction present in
the Hamiltonian, and FID acquisition as the pulse
sequence. The full main input file for this simulation is
shown below. In the rest of the examples, the lines con-
taining only asterisks will be omitted from the input files.

Essentially, the only point of concern in this simulation
is to correctly specify the powder averaging scheme. An
asymmetric CSA tensor generates a powder pattern that
requires averaging over thousands of crystallites to be
accurately reproduced in a simulation. As in all static
experiments, the Euler angles for powder averaging define
the transformation from the crystallite frame to the labo-
ratory frame. The z-axis of the latter is fixed in the direc-
tion of the main magnetic field. Since the Hamiltonian is
invariant with respect to the rotations about the field,
powder averaging needs to be performed over a and b
angles only (in a symmetric tensor, averaging over the
angle awould be unnecessary either). The circumflex sym-
bol ( ), prefixing the number of b-averaging steps in the

line, directs the program to interpret the
number 100 given at the n_gamma line as the number of
averaging steps in the angle a used. The option
restrains the sampling to one octant only. The resulting
spectrum (Fig. 6) is obtained with 400 Æ 100 = 40,000 crys-
tallites. The angle sets specifically designed for two-dimen-
sional powder averaging are usually more efficient than
independent sampling in each angle. However, SPIN-

EVOLUTION currently does not automatically generate
such sets, and the largest two-angle octant set included
with the program ( ) is still far too small to
faithfully reproduce the powder pattern in this example.

7.2. REDOR

This is an example of a simple MAS experiment
known as REDOR [80]. Its pulse sequence is shown in
Fig. 7A. The portions that are grayed out are assumed
to behave ideally and are not included into the simula-
tion explicitly. During the REDOR pulse sequence, the
transverse magnetization created on the 13C nuclei by
the cross-polarization with protons is dephased by the
13C–15N dipolar coupling reintroduced into the effective
Hamiltonian by means of a train of p pulses on the
15N channel. The resulting dephasing curve (Fig. 7B)
can be computed with the help of the following input file:

–1 0

Frequency, kHz

1

Fig. 6. CSA powder pattern (Xaniso = 1 kHz and gX = 0.5).
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As seen in the timing line for the 15N channel, the RF
cycle of the REDOR sequence is provided in a separate
file . The file contains the following pulse
program:

the four columns of which represent, respectively, the
duration, the power, the phase, and the frequency offset
of the four pulses it describes.

The pulse sequence of the experiment is composed of
three elementary pulse sequences. The first and the third
are incremented simultaneously, ‘‘growing’’ on both
sides of the D0-sequence. Note that the duration of each
pulse sequence is the same on both channels. The

option directs the program to include all three
sequences in the calculation of the mixing time that labels
the data on the output (but has no effect on the simula-
tion itself). Thus, the first point appears at 0.2 ms rather
than at zero time.

The configuration of the two-spin system is specified
in this example as the internuclear distance in the
atomic_coords line. Hence, by default, the spins
are aligned along the z-axis of the crystallite frame.

Since the only anisotropic interaction present in the
system is the dipolar coupling of the two nuclei (a sym-
metric tensor), the Hamiltonian is invariant with
respect to rotations about the axis connecting the
spins, which are generated by the aCR angle. Therefore,
powder averaging has to be performed only over the
angles b and c. As mentioned in the previous example,
two-angle sets are usually the most efficient way of
accomplishing that. Furthermore, the symmetry of the
Hamiltonian is such that averaging only over a hemi-
sphere is required [65]. However, the available two-an-
gle sets restricted to the hemisphere do not seem to
produce more accurate results than the full spherical
sets with the same number of crystallites in this exam-
ple. The set used in the example is sufficiently
large to reproduce the time evolution up to about
10 ms (for the given coupling of 1.2 kHz, which can
be examined by running the example with the
option). For higher precision, averaging has to be done
with more crystallites. The largest two-angle set includ-
ed with the program is [65].
Results of even higher quality of the powder averaging,
can be obtained by using automatically generated angle
sets, for example:

Note the option and the absence of the cir-
cumflex character. Although the powder averaging
here is carried over 20,000 crystallites, the computa-
tion is only about twice as long as with the 5151
shrewd-step set because averaging over c in this case
is performed by an algorithm that takes advantage
of the time-c-translational symmetry of the
Hamiltonian.

7.3. Heteronuclear decoupling: TPPM

Heteronuclear decoupling using the TPPM sequence
[79] is an essential part of most MAS experiments per-
formed with 1H-containing samples. The sequence is a
windowless train of constant-power, approximately
180� pulses with phases alternating between 0 and /.
When the sequence is applied experimentally, it is very
important to tune it to obtain the narrowest lines pos-
sible, while being limited by the maximum RF power
that can be tolerated by the probe or the sample.
The main input file below simulates the effect of the
decoupling field strength on the resulting line shape.
This is accomplished by the explicit simulation of the
FID:

0 2 n 2n... ...

CP

Rotor

13
C

15
N

CP
1
H Decouple TPPM

0 5 10

0

0.2

0.4

0.6

0.8

1

time, ms

In
te

ns
ity

A

B

1

Fig. 7. The REDOR pulse sequence (A) and a simulated dephasing
curve (B).
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The Pulse Sequence section shows that the sequence
has a group size 200, so it is sampled once every 200
TPPM RF cycles, producing the desired spectral width;
256 points are collected in this way. For the computa-
tions to be efficient, the pulse sequence has to be
rotor-synchronized (Eq. (37)). The n/m ratio is the num-
ber of RF cycles of the pulse sequence per one rotor
period, and thus, for a fixed spinning frequency,
uniquely determines the length of the RF cycle (the

variable). In this example, the ratio is defined as
the variable R (a scan parameter), which is made to
vary from 4.5 to 5.25 in steps of 0.25. The pulse lengths
and the RF power on the 1H channel are recalculated
for each of these values. To keep the dwell time (DW)
constant, the sequence group size has to be adjusted
as well, so the value specified for the group size in the
Pulse Sequence section is actually disregarded. The
powder averaging in this example is accomplished with
a two-angle (a, b) set in combination with independent
averaging over 16 c values.

The line shapes simulated with this input file (Fig. 8)
illustrate a very important phenomenon, the effect of
which is often neglected: the decoupling becomes ineffi-
cient when the RF field coincides with a multiple of the
spinning frequency. Furthermore, the peaks obtained
with 70.3 and 74.2 kHz of decoupling power have nearly
identical intensities.

7.4. Experiments with composite dimensions: HCCN

dipolar correlation

The HCCN dipolar correlation experiment [81] simu-
lated in this example was recently proposed to measure
the w angle in a-helical polypeptides. This experiment
has a relatively complex pulse sequence (Fig. 9A). As
before, the parts of the experimental pulse sequence that
are grayed out are assumed to behave ideally and are not
simulated directly. The initial state is prepared by the
cross-polarization transfer followed by the SELDOM fil-
ter [82]. The latter is intended to suppress the polariza-
tion of all nuclei that are not on-resonance with the
applied frequency. This part of the experiment is
assumed to result in the initial state given at the line
of the main input file. The Ix polarization of the first 13C
nucleus is then partially dephased by the REDOR
sequence, transferred to the other 13C nucleus with the
HORROR recoupling sequence [83], and, finally, evolved
under the Lee-Goldburg cross-polarization (LGCP)
sequence [84], which reintroduces the CH dipolar cou-
pling into the Hamiltonian. The HORROR period is
kept constant, while the REDOR and LGCP periods
are incremented simultaneously.

In the main input file below, the pulse sequence is
composed of five elementary pulse sequences:

As follows from their timing format specifications, the
pulse sequences 1, 3, and 5 are sampled in the same
dimension (D1). The pulse sequences 2 and 4 are D0-se-
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quences; the latter is executed 7 times for every data
point, as specified by its group size. The REDOR
sequences (at the 15N channel) are supplied as separate
files:

Note that the p pulses in these sequences are simulated
as ideal since RF power is greater than 499 kHz. All pulse
lengths and powers in the Pulse Sequence section are giv-
en for the spinning frequency of 10 kHz. In the Variables
section, these parameters are rescaled according to the
spinning frequency used for the actual computation.
The 1H channel RF power during the LGCP sequence
is independent of the spinning frequency and is set (in
the Pulse Sequence section) to yield the effective RF field
of 80 kHz. The corresponding power at the 13C channel is
set one spinning frequency below this value. The option

directs the program to count only the first and
the third sequences in the calculation of the evolution
time that labels the data on the output of the calculation.
The HCCN torsion angle is varied throughout the region
of sensitivity of the experiment (which covers the confor-
mations of the H-Ca-C

0-N group in a-helical peptides) by
means of the scan parameter phi_1. The resulting
dephasing curves are shown in Fig. 9B.

7.5. Double-quantum filtering: SPC-5 and

MELODRAMA

The effects of CSA are often neglected when dipolar
recoupling sequences are designed. These effects may be
very significant, however. The following example com-
pares the efficiency of the double-quantum filters based
on two dipolar recoupling sequences, i-MELO (also
known as MELODRAMA-4.5), which is an unpublished
version of the original MELODRAMA sequence [85]
suggested by B. Sun, and SPC-5 [78], in the absence
and in the presence of strong CSA interactions. From
the viewpoint of the SPINEVOLUTION interface, this
example illustrates the use of phase cycling and of the
explicit coherence pathway selection as its alternative.

The homonuclear recoupling pulse sequences i-MELO
and SPC-5 are shown in Fig. 10. The full RF cycle of
i-MELO spans 16 rotor periods, while the RF cycle of
SPC-5 spans only four rotor periods. The RF field power
is constant during both sequences: it is 4.5xR in the case
of i-MELO, and 5xR in the case of SPC-5. The shortest
pulse is sR/9 in i-MELO (the p pulse), and sR/20 in SPC-
5 (the p/2 pulse). All other pulses in both sequences are
multiples of these two periods. It is important to keep
these symmetry numbers (9 and 20) in mind when setting
the number of averaging steps to take in the angle c (giv-
en at the n_gamma line). For the simulation to be as effi-
cient as possible, this number should be a multiple of 9
for the i-MELO, and a multiple of 20, for SPC-5. The
input file for the i-MELO-based double-quantum filter
is shown below:

TPPMLGCP

REDOR

HORROR LGCP

CP

CP

Decoupling

t
CN

t
CH

15N

13C

1H

t
CN 

= Rt
CH

n

0

0.2

0.4

0.6
–130
–140
–150
–160
–170
–180

t
CN

, ms
0 2 3
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ity

A

B

1

Fig. 9. The HCCN dipolar correlation experiment pulse sequence (A)
and the set of dephasing curves (B) obtained for H–Ca–C

0–N peptide
fragments having different values of the H–C–C–N torsion angle u1.
The peptide angle w = u1 + 120�.

–100 0 100

70.3 kHz (R = 4.5)

74.2 kHz (R = 4.75)

78.1 kHz (R = 5)

82.0 kHz (R = 5.25)

Frequency, Hz

Fig. 8. 13C line shape observed using TPPM decoupling at different RF
field strengths. The broadest peak at xRF/2p = 78.1 kHz corresponds to
exactly five TPPM cycles per rotor period. TPPM conditions used: 180�
pulses with 15� phase alternation.
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The pulse programs of both sequences are supplied as
separate files, which are not shown, but can be recon-
structed from Figs. 9A–B. The i-MELO pulse program
was composed assuming the sR of 90 ls, while the
SPC-5 pulse program was composed assuming
sR = 100 ls, both of which result in the 50 kHz RF field
and pulses lasting a whole number of microseconds.

These choices are very convenient for composing and
inspecting these pulse programs. For the simulations at
other spinning frequencies, the pulse programs are
rescaled using the power and time scaling factors in the
Variables section.

The corresponding file for SPC-5 is obtained by
substituting the following lines,

in place of the similar lines in the i-MELO file. Note the
four-fold increase in the number of sampling points (the
RF cycle of SPC-5 is four times shorter than that of
i-MELO) and a different scaling.

The results of the simulations are shown in Fig. 10D.As
one can see, although performing much better than
i-MELO in the absence of CSA, SPC-5 fails in the presence
of large CSA interaction, while the performance of
i-MELO is practically unaffected. The same input files
can be used to also show that for directly bonded nuclei,
SPC-5 outperforms i-MELO even in the presence of large
CSA.

The phase cycling used in the example is self-explana-
tory. It should be remembered, however, that performing
the phase cycling in this manner mimics the actual exper-
iment and thus requires the explicit simulation of each

φj = j(2π/5)
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Fig. 10. The RF cycles of the homonuclear recoupling sequences SPC-5 (A) and i-MELO (B). The layout of a double-quantum filter sequence (C); S/

is the RF cycle of the sequence (i-MELO or SPC-5); the double-quantum coherence pathways are selected by phase cycling / (the phase of the
sequence during the reconversion period), the phase of the final p/2 pulse, and the receiver phase. (D) The efficiencies of the double-quantum filters
based on i-MELO and SPC-5 computed for a weakly coupled spin pair.
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step in the phase cycle. For long phase cycles, it may slow
down the simulation significantly. To avoid this effect
or to verify that the phase cycle chosen works as expect-
ed, one can often use the explicit coherence selection
instead:

Note the additional zero-length pulse sequence insert-
ed between the two halves of the experiment. The ±2
coherences are selected during this sequence, the rest
are destroyed directly in the density matrix during the
propagation.

7.6. Two-dimensional MAS experiments: chemical shift

correlation

This example was described earlier, in the section deal-
ing with the performance of the program (Fig. 5). The
pulse sequence of the experiment (Fig. 11) is a typical
example of the preparation-(t1-evolution)-mixing-(t2-
evolution) layout. Coherence pathway selection is
accomplished by means of a z-filter, i.e., by annihilation
of all off-diagonal elements of the density matrix. The
main input file for this simulation is shown below.

The RF cycle of the RFDR sequence used for mixing
is given is a separate file :

To obtain a pure-phase spectrum, the cosine trans-
form is used in the indirect dimension instead of the Fou-
rier transform. Since the cosine transform cannot
distinguish between positive and negative frequencies,
the spectrum has to be recorded in such a way that all
its frequencies have the same sign. In the present exam-
ple, this is accomplished with the help of the frequency
shift variables. The �16 kHz RF offset in both dimen-
sions moves the entire spectrum (specified in the

) into the positive frequencies quadrant, while
the �4 kHz offset places the RF into the middle of the
spectrum during RFDR (see Eq. (25)).

7.7. Non-periodic problems, gradients, and relaxation:

CW NMR

From the experimental viewpoint, continuous wave
(CW) NMR is very different from all other examples
we have considered so far. From the computational
viewpoint, however, the difference is not so vast and
consists mostly in the absence of any kind of periodicity
in this problem. A CW scan can be done by varying
either the static magnetic field or the irradiation
frequency. To scan the field in SPINEVOLUTION,
one can use the PFG slice simulation feature. In the
input file below, the bracketed notation in the Pulse
Sequence section is a macro (see , Table
A1) that expands into a sequence of 5001 identical puls-
es, 100 ms each:

z-filter

πφ

t2

τmix=8nτR

t1
CP

CP1H
Decouple TPPM

8n

z-filter

13C

Fig. 11. The pulse sequence of the 2D chemical shift correlation
experiment. RFDR recoupling sequence [86] (with XY-8 [87] phase
alternation for /) is employed for mixing. The 2D spectrum obtained in
the simulation of this experiment is given in Fig. 5 together with the
details of the simulation.
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Declaration of the variable grad_offs with the value 1
directs the program to perform the computations for only
one slice of the sample, 1 cm away from the center of the
gradients.Hence, the pulses at the PFG channel are simply
shifting the field in the observed part of the sample. In our
example, this shift is ramped from �25 Hz for the first
pulse, to +25 Hz for the last. The variable _s_p sets
the gradient in Gs/cm, so the factor 1070.8 (kHz/Gs) is re-
quired to convert the values expressed inkHz.Note that no
variables are actually scanned in this example. Rather, the
option (observe each step) tells the program to take a
data point after each pulse. This setup leads to the explicit
integration of the Bloch equations, with the result shown
in Fig. 12.

Both T1 and T2 are set to 2 s; the RF power is set to
approximately maximize the signal at these relaxation
rates. Since the longitudinal relaxation is present, it is
important to set the initial density matrix equal to the
equilibrium density matrix (Eq. (38)), hence the 0.25
factor in the line. The field is swept at the rate of
0.1 Hz/s, leading to the characteristic ‘‘ringing’’ the
signal (Fig. 12) with the relaxation parameters used.

The option limits the integration step to
10 ms (for static problems, the default is the full length
of the pulse, 100 ms in this case). This step should be suf-
ficiently small so that relaxation could be neglected on
the time scale of a single step.

Exactly the same results could be obtained by sweep-
ing the irradiation frequency instead of the field. The
Pulse Sequence and the Variables section of the corre-
sponding input file are shown below:

7.8. Averaging over a distribution: Carr–Purcell echo train

The main point of this example is to illustrate the use
of the average-over parameters. Although the pulse
sequence of the Carr–Purcell–Meiboom–Gill train
[88,89] is periodic, the observation of the echoes requires
sampling more than once per sequence RF cycle. In the
current version of SPINEVOLUTION, this feature is
not functional yet. Hence, the pulse sequence must be
treated as a general non-periodic sequence. The input file
for the simulation is shown below.

With the option , the magnetization is observed
after each pulse. Every 200-th pulse is turned into an ideal
p pulse in the Variables section. The pulses refocus evolu-
tion due to the chemical shift, which is given a Gaussian
distribution with r = 6 Hz. Some care must be taken to
make the sum of all weights of the distribution equal to
1. The factor 0.0025 in front of the normalized Gaussian
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Fig. 12. Continuous-wave NMR scan of a single spin.
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probability distribution comes from the conversion of the
integral over the probability density to the sum of discrete
weights (the distribution is sampled with Dx = 0.0025).
Averaging the results over this distribution produces the
well-known echo train shown in Fig. 13.

In the upcoming versions of the program, one will be
able to perform multiple observations per RF cycle, in
which case the pulse sequence of the experiment should
be described as follows:

7.9. Optimization problems: design of a selective excitation

pulse

This example demonstrates the use of SPINEVOLU-
TION for solving optimization and data fitting prob-
lems. It also illustrates the use of matrix variables.
Input files very similar to the one in this example were
used to design a family of high-performance excitation
pulses known as the E-Family [5].

The timing of the pulse sequence in this example is set
up with the help of a ‘‘timing program’’ , which
is simply a column consisting of 100 copies of the number
100. This creates a pulse sequence consisting of 100 puls-
es, 100 ls each.

The pulse shape xRF(t) is parametrized by the coeffi-
cients of the truncated Fourier series:

xRF tð Þ=x ¼ A0 þ
Xn

k¼1

Ak cos kxtð Þ þ Bk sin kxtð Þf g; ð39Þ

where x = 2p/s, and s is the excitation time, i.e., the total
duration of the shape; in our case, s = 10 ms. The pulse
shape is computed according to Eq. (39) from the col-

umn-matrices and formed by the Fourier coefficients,
and the square matrices and formed by the cosines
and sines. The starting point for the optimization is given
in the file

Declaring these variables with the command line option
is often a convenient alternative

to the statement in the Vari-
ables section, because different starting point files may be
tried in this way without editing the main input file. The
fit parameters that have not been initialized explicitly in
the file are initialized with zeros by
default.

The chemical shift of the spin is declared as a scan
parameter.Thus, thepulse shapewill be executed forall off-
sets given in the list of values for this parameter, i.e., from 0
to 5 kHz, in steps of 25 Hz. Each execution gives one data
point. The collection of all these points gives the excitation
profile of the pulse shape. The target excitation profile is
given by the files , ,

, and , and has a rect-
angular shapewitha zero-weight transition zone extending
from 0.05 to 0.2 kHz:

Once the optimization is started, SPINEVOLUTION
finds the best-fit parameters (the E100A member of the
E-Family [5]) within a few seconds, and saves them in
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Fig. 13. Carr–Purcell–Meiboom–Gill echo train in an inhomogeneous
magnetic field.
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the file named . The excitation profile of
the resulting pulse can be computed in a separate simula-
tion, where this file is used instead of and
the main input file is edited to comment out the contents
of the line in order to turn off the optimization.
A more appropriate value list for the parameter
scan should also be used (e.g., ). The pulse
shape of the resulting pulse can be obtained with the help
of the option (see Table A3). The real part of the
excitation profile and the pulse shape are shown in
Fig. 14. The quality of the excitation profile exceeds by
far the quality of the excitation profiles of any other anal-
ogous pulse known prior to design of the E-Family.

8. Conclusions

SPINEVOLUTION is a state-of-the-art computer
program able to meet a wide range of needs arising in
the context of exact simulations in NMR. One of the
greatest advantages of SPINEVOLUTION is its efficien-
cy, which is particularly remarkable for computations
involving large spin systems. In a head-to-head compar-
ison of SPINEVOLUTION with SIMPSON on a series
of test examples, the former was consistently found sev-
eral orders of magnitude faster than the latter, depending
on the spin system size and on the type of the experiment.
The other advantage of the program is the simplicity of
use. In particular, the interface is based on a natural,
non-algorithmic description of the NMR pulse sequences
(‘‘the canonical representation’’), which is also well suit-
ed as the framework for the construction of efficient sim-
ulations of complex pulse sequences, and can be explored
as the language for spectrometer interfaces. For research-
ers working in solid-state NMR, SPINEVOLUTION
should be of great utility as a routine simulation tool
for use in conjuction with running actual experiments
on the spectrometer, as well as for the design and optimi-
zation of new experiments, theoretical research, data fit-
ting, and other purposes. Liquid state spectroscopists
will find it particularly useful for solving various optimi-
zation problems. With its simplicity of use, SPINEVO-
LUTION should broaden the community of people
who use NMR simulations in their research. With its
high performance and ability to deal with large spin sys-
tems on a reasonable time scale, it makes possible to use
exact numerical simulations in situations not previously
amenable to this approach.
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Table A1
The main input file formats

System

spectrometer(MHz) freq
1H frequency of the spectrometer, MHz. The default is 500 MHz.

spinning_freq(kHz) freq

Sample spinning frequency, kHz. The default is zero.

channels Nuc1 Nuc2 . . . NucM
Examples:

(continued on next page)
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Table A1 (continued)

The sequence of names of the nuclear species participating in the experiment. The order in which the nuclear species appear at
this line is used to assign a number (from 1 to M) to every channel. A nucleus that is unknown to the program can be
introduced on this line as Name(freq [I]), where freq is the (unsigned) frequency of the nucleus, in MHz, and I is its signed spin
quantum number (which can be omitted if equal to 1/2).

nuclei spin1 spin2 . . . spinN
Example:

An ordered sequence of names that specifies the type of each spin in the system. This line assigns each spin to one of the nuclear
species declared at the previous line. All spins in the system are numbered from 1 to N in the order they appear at this line.

atomic_coords filename OR r

Examples:

Atomic coordinates file name.The filee should contain the triplets of atomic coordinates (crystallite frame), in Ångströms, one per
line, given for each nucleus in order from 1 toN. The coordinates are used by the program to compute the dipolar interactions in
the system. For a 2-spin system, the internuclear distance may be given instead of the file name, in which case the two nuclei are
placedalong the z-axis of the crystal,with thefirst nucleusplacedat theoriginof coordinates, and the second—at the (0, 0, r) point.
If neither filename nor r are specified, all dipolar interactions in the system are turned off.

cs_isotropic X1
iso=2p X2

iso=2p . . . XN
iso=2p [kHzjHz] OR

d1iso d2iso . . . dNiso ppm OR
filename [ppmjHzjkHz]

Examples:

Isotropic chemical shifts or chemical shift offsets, given for each nucleus in order from 1 to N. The default units for the offsets
are kHz. The values can be specified directly on the line, or in a separate file.e The values in the file should be arranged one per
line. The default values are all zero. Note that for c > 0 nuclei, Xi

iso and diiso have opposite signs.

csa_parameters i Xi
aniso=2p j dianiso


 �
giX aiX;PC biX;PC ciX;PC [kHzjHzjppm] OR

filename [ppmjHzjkHz]

Examples:

The CSA tensor parametersf of the ith spin. By default, the value of Xi
aniso=2p, kHz, is expected at this line; however, it will

be interpreted as dianiso if the option ppm is specified (tensors Xi and di have the same parameters except for the anisotropy).
The values can be specified directly on the line, or in a separate filee. In the file, the values should be arranged six per line. The
csa_parameters line has to be repeated as many times as necessary to specify all CSA interactions present in the system. The
default values are all zero.

j_coupling i j J ijiso OR

i j J ijiso J ijaniso gijJ aijJ ;PC bijJ ;PC cijJ ;PC OR
filename

J-coupling parametersf of spins i and j; J ijiso and J ijaniso should be given in Hz. The values can be specified directly at the line or
in a separate file.e In the file, the values should be arranged either three or eight in every line. The j_coupling line has to be
repeated as many times as necessary to specify all j-couplings present in the system. The default values are all zero.

quadrupole i vi giV aiV ;PC biV ;PC ciV ;PC OR filename

Quadrupolar interaction parametersf of the spin i; vi should be given in kHz. The values can be specified explicitly on the line
or in a separate file.e In the file, the values should be arranged six per line. The quadrupole line has to be repeated as many times
as necessary to specify all quadrupolar interactions in the system. The default values are all zero. Quadrupolar interactions are
not functional in the current version of the program.

dip_switchboard filename OR filename1 filename2 . . . filenameS
Dipolar switchboard. If just one file name is given on the line, it turns on/off the dipolar couplings between the nuclei during
the whole experiment. If multiple file names are given, the board switches the couplings during each pulse sequence
independently. Each file should be formatted as the lower triangular matrix containing 1 to turn the corresponding coupling
on and 0 to turn it off, e.g., the matrix

turns on the dipolar interaction for the (1,2) and (2,3)spin pairs and off for the (1,3) spin pair. The asterisks are treated
as comments. If no file names given on the line, all dipolar interactions are on.

csa_switchboard filename OR filename1 filename2 . . . filenameS
The analogous option for the CSA interaction, except that a sequence of 1�s and 0�s should be specified instead of a matrix in
each file.
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Table A1 (continued)

exchange_nuclei ði 1ð Þ
1 i 1ð Þ

2 . . .Þg ði 2ð Þ
1 i 2ð Þ

2 . . .Þg . . .

Example:

Each group of spins in the parentheses undergoes fast regime exchange through cyclic permutation (e.g. methyl group hopping).

bond_len_nuclei ðj 1ð Þ
1 j 1ð Þ

2 j 1ð Þ
3 . . .Þg ðj 2ð Þ

1 j 2ð Þ
2 j 2ð Þ

3 . . .Þg . . .

Example:

Sequences of nuclei defining the meaning of the internal variables , , etc. (bond lengths). These variables can be used to
set the internuclear distances in the spin system. When the variable r_k is applied to the structure, all nuclei in the kth group,
except for the 1st, are translated (as a group) in the 1–2 direction as much as necessary to produce the specified distance
between the 1st and the 2nd nuclei.

bond_ang_nuclei ðk 1ð Þ
1 k 1ð Þ

2 k 1ð Þ
3 . . .Þg ðk 2ð Þ

1 k 2ð Þ
2 k 2ð Þ

3 . . .Þg . . .

Example:

Sequences of nuclei defining the meaning of the internal variables , etc. (bond angles). These variables can
be used to set the bond angles in the spin system. When the variable theta_k is applied to the structure, all nuclei in the kth
group, except for the 1st and the 2nd, are rotated (as a group) about the axis passing through the 2nd nucleus perpendicular to
the 1–2–3 plane as much as necessary to produce the specified 1–2–3 angle. The CSA and quadrupolar coupling tensors of the
3rd, 4th, etc. nuclei are rotated together with the nuclei.

tors_ang_nuclei ðl 1ð Þ
1 l 1ð Þ

2 l 1ð Þ
3 l 1ð Þ

4 . . .Þg ðl 2ð Þ
1 l 2ð Þ

2 l 2ð Þ
3 l 2ð Þ

4 . . .Þg . . .

Example:

Sequences of nuclei defining themeaningof the internal variables , , etc. (torsion angles).The first fournuclei of each
sequence define a torsion (dihedral) angle in the molecule. The rest of the sequence defines the set of nuclei rotated together with
the 4th nucleus when the angle is changed. The torsion angle is defined as zero for the cis-configuration of the 1–2–3–4 chain and
is increased as the 4th, 5th, etc. nuclei are rotated (as a group) around the 2–3 bond counterclockwise looking in the 3 ! 2
direction. The CSA and quadrupolar coupling tensors of the 3rd, 4th, etc. nuclei are also rotated as the torsion angle is changed.

groups_nuclei ðm 1ð Þ
1 . . .Þg ðm 2ð Þ

1 . . .Þg. . .
Example:

Each sequence in parentheses defines a group of nuclei that can be rotated and translated as a whole. When the
transformations are applied, the kth group is rotated about the origin of coordinates through the Euler angles group_k_R, and
then translated by the vector group_k_T. The CSA and quadrupolar coupling tensors are rotated together with the nuclei.

Pulse Sequence

CHN n OR G

The channel number (same as the nuclear species number). This subsection of the main input file should appear once for every
channel. Following the regular channels, a PFG channel may be declared by putting the letter G instead of the channel
number.

timing(usec)
Examples:

The timing and the sampling pattern of each elementary pulse sequence of the experiment. Any X sð Þ
i can be either a numerical

constant specifying the duration of a pulse in the pulse sequence s, or a file name. If X sð Þ
i is a file (a pulse program), its lines

should be of the form:

duration power phase frequency

describing each pulse in the group of pulses X sð Þ
i . Alternatively, the file may contain just one column, describing the duration of

each pulse in X sð Þ
i .

In general, the number of pulses in a given pulse sequence and their durations are different for every channel, but the total
duration of the pulse sequence cycle must be the same for all channels. The sampling patterns for each sequence (which are
also the same on all channels) are given at the timing line of the first channel only. In the pattern specification, dim is the
dimension, in which the pulse sequence is sampled (simultaneously with the other pulse sequences of this dimension). N is the
number of the sampling points to obtain; it should be the same for all pulse sequences of the dimension. All D1 and D2 pulse
sequences must be rotor-synchronized (Eq. (37)).
The sampling pattern of a pulse sequence is given as either xG or gg (or omitted if g = G = 1), where G is the group size, and

g is the sampling rate. The sequence is either executed in groups of size G, i.e. sampled after every G cycles of the sequence, or
sampled g times per each cycle. The minus sign is placed before N for decremented pulse sequences.

(continued on next page)

M. Veshtort, R.G. Griffin / Journal of Magnetic Resonance 178 (2006) 248–282 273

ARTICLE IN PRESS



Table A1 (continued)

The default value for N, G, and g is 1. If N = 1, the default value of dim is 0, but if N > 1, then the default value of dim is
1. For example, the pattern specification may be omitted altogether for a D0-sequence with G = 1. The parentheses enclosing
the pulse widths may be also omitted in this case if the adjacent pulse sequences are parenthesized. Thus, each of the three
examples above describes exactly three elementary sequences.
A pulse may be specified as ideal by putting an apostrophe mark immediately after its duration or by setting its power above

the ideal-pulse threshold (see –id option). Note that the actual duration of an ideal pulse in the pulse sequence is zero.
The following notation may be used to generate repeated pulse sequence elements:
[string] rep

This is essentially a macro that will be expanded as the string string repeated rep times, using spaces as delimiters. For example,
is equivalent to where the sequence ‘‘ ’’ is repeated 100 times in the

parentheses.

power(kHz) W 1ð Þ
1 W 1ð Þ

2 . . .

phase(deg) P 1ð Þ
1 P 1ð Þ

2 . . .

freq_offs(kHz) F 1ð Þ
1 F 1ð Þ

2 . . .

Power, phase, and frequency offset of each pulse (xk
RF tð Þ=2p, /k(t), and xk

off tð Þ=2p, respectively; Eqs. (24) and (25)). Every
entry X sð Þ

i on the timing(usec) line of a given channel requires exactly one entry on each of the power/phase/frequency lines of
this channel. If a pulse length is given at the timing line, the corresponding entry has to be a numerical constant. However, if
X sð Þ

i is a pulse program, the entry in the power/phase/frequency line can be either of the three: (1) an asterisk, which instructs
to load the values from the pulse program; (2) a numerical constant, which sets constant power, phase or frequency offset
during the whole pulse program, possibly overriding the values given in the file; (3) a file name of another pulse program, from
which the sequence of powers, phases or frequency offsets should be loaded. The latter file may be either in the one-column
format containing the powers/phases/frequencis of all pulses, or in the 4-column pulse program format (see timing(usec) line).
In the later case, only the required column from this file will be loaded. The macro with the brackets described above (see
timing(usec) line) is allowed in the power/phase/frequency lines as well.
Rather than specifying the desired numerical values describing the RF pulses in the Pulse Sequence section directly, it is

often more convenient to compute the values in the Variables section of the file. In this case, any numerical constants (e.g.,
zeros) can be used at the power/phase/frequency lines for the values that will be recalculated in the Variables section.
If the power given is higher than 499 kHz the pulse is assumed to be an ideal delta-pulse with the same rotation angle it

would have if it were a regular pulse (this behavior may be changed with the help of the –id command line option).
Alternatively, a pulse may be specified as ideal by putting an apostrophe mark immediately after its duration at the
timing(usec) line.
The phases are interpreted as given in the frame of reference that continuously rotates at the instantaneous RF frequency

throughout the duration of the entire RF path.

gradient(Gs/cm) G 1ð Þ
1 G 1ð Þ

2 . . .

The field gradient of each gradient pulse (PFG channel only). The syntax is the same as with the power/phase/frequency lines
above. This line must follow the timing line for the PFG channel.

phase_cycling PC1 PC2 . . .PCS PCRCV(RCV)
Example:

The phase cycles of each elementary pulse sequence and of the receiver. An m-step phase cycle PCs is defined by the set of m
phase shifts i sð Þ

k

�
1 6 i sð Þ

k 6 n; k ¼ 1 . . .mÞ. At the step k of the phase cycle, the phases of all pulses of the pulse sequence s are
shifted from their base values by

�
i sð Þ
k � 1Þ � 360�=n. (The base values are those set at the phase(deg) lines or through the

variables.) The phase cycle can be specified either explicitly, as a group of digits i sð Þ
1 . . . i sð Þ

m , or loaded from a file if the file name
is given. In the file, the phase shifts must be separated by spaces and/or new line characters. If a pulse sequence is not phase
cycled (i sð Þ

k ¼ 1 for all k), an asterisk can be used to specify its phase cycle. The default value of n is 4; a different value can be
set with the command line option –pcn. For n > 9, the phase cycles can be given only through files (since i sð Þ

k have to be single-
digit numbers to be specified explicitly). Note that each pulse sequence is phase-cycled as a whole. The phase_cycling line is
optional.

Variables

scan_par namea/list-of-valuesb/. . .
Example:

A scan parameter. The simulation will be performed for every value of the parameter from the given list-of-values. Every scan
parameter adds one dimension to the experiment. A maximum of two dimensions, including the dimensions generated by the
pulse sequence, is currently allowed.

ave_par namea/ list-of-valuesb/ . . .
Example:

An average-over parameter. The value lists of all such variables should be of equal size. Let a, b, . . . be the average-over
parameters, and let ai, bi, . . . , i = 1, . . . , N be the components of their value lists. Then the simulation will be performed N

times (for i = 1, . . . , N), each time using the ith set of values for the average-over parameters: a = ai, b = bi. . . The data points
obtained in these simulations, x ið Þ

k , will be averaged as

xk ¼
PN

i¼1 wix
ið Þ
k
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Table A1 (continued)

to produce the final data points xk given at the simulation output. The weights of the distribution, wi, are given by the variable
ave_wht. The default value for this variable is 1/N. If this is the desired distribution, ave_wht does not need to be declared.

fit_par namea,d[/list-of-valuesb/] . . .

Example:

Parameters to be optimized. The values of these variables are changed by the fitting routine during the optimization.
Specifying a fit parameter with a list-of-values, sets up a grid of the initial points for the minimization. The grid is constructed
as the Cartesian (direct) product of all specified lists-of-values. If a fit parameter is declared without a list-of-values, initial value
for this parameter will be zero unless changed by a declaration of this parameter as a variable.
The only difference in the input files for a parameter fit anda regular simulationof a certain experiment is that in the former, one

ormore variables aredeclaredas fit parameters. SPINEVOLUTIONwill look for thefileswith thedatapoints tobefit and thefiles
containing the weights of these data points. The files should be provided by the user and named accordingly (see the Naming
Conventions section); theweights files are optional.Thedata in thesefiles shouldbe formattedas if producedby the same inputfile
but without fitting. The weights files should also be in this format, except that each data point should be replaced with its weight.
The default optimization method used in SPINEVOLUTION is NL2SOL [73,74], which is a Newton-type nonlinear least-

squares algorithm. Alternatively, one can choose theMINPACK routine [75,76] (option –lm). The initial conditions grid can be
used to perform a grid search, in conjunction with one of thesemethods, or by itself. See also optimization control options (Table
A2) and variables (Table A3), and the Output and File Naming Conventions section.

variable namea,d = expressionc,d OR
filename OR
namesa,d�filename

Example:

Declaration of a variable. The variable is re-calculated from its expression each time when fit, scan, or average-over
parameters that it depends on are changed. If the variable does not depend on any such parameters, it remains constant after it
was initialized. The variables are evaluated in the order of their declaration. If a file name is given, declarations in the file
should be given one per line as namea,d = expression c,d. In the third format, the names should be given in the vectorized
notation, and the file should contain the list of the expressions.

rowmatrix namea/list-of-valuesb/
Example:

Declares a row matrix.

colmatrix namea/list-of-valuesb/
Example:

Declares a column matrix.

matrix namea/list-of-valuesb; list-of-valuesb; . . . / OR
namea/filename/

Examples:

Declares a rectangular matrix. In the first format, the rows of the matrix are separated by the semicolon; in the second, the
matrix is loaded from a file.

penalty expressionc,d

The sum of squares of all penalty expressions is added to the weighted sum of the residual squares minimized by the fitting
routine.

Options

rho0 [c1. . .cN] {IxjIz}
Example:

Contributions to the initial density matrix from each spin in the system, followed by the operator type:

q0 ¼
XN

k¼1
ckIkz or q0 ¼

XN

k¼1
ckIkx

The default is ck = 1 for all k.

observed_spins i j k . . . {IxjIyjIzjIpjIa} OR
n {InxjInyjInzjInpjIna} OR
n {FxjFyjFp}

Examples:

In the first version of the format, the list of the spins to be observed is followed with the type of the observable. In the second,
all spins on the channel number n are observed individually. In the third format, the total transverse polarization on channel n
is observed. In all three cases, p (plus) stands for both x and y, while a (all) stands for x, y and z. n-Quantum observables
should also be available in the future versions of the program.

(continued on next page)
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Table A1 (continued)

EulerAngles [ ] filename OR [ ] n OR a b c
Examples:

The file should contain the set of Euler angles (in radians) to be used for powder averaging. The Euler angles define
the rotation from the crystallite frame to the rotor frame in MAS experiments, (aCR, bCR, cCR), or to the
laboratory frame in static experiments, (aCL, bCL, cCL). The z-axis of the rotor-fixed frame is aligned with the axis
of the rotor, the z-axis of the laboratory frame—with B0. In the file, the angles should be given one orientation per
line, ordered as a b c w for three-angle sets, and a b w—for two-angle sets, with w being the weight of the point. In
the case of a two-angle set, additional averaging over the third angle can be requested at the n_gamma line. If a
single number n is given at the EulerAngles line, it is interpreted as number of points in the b-only angle set (which
is generated automatically in this case). In this case, no averaging is performed over a, while additional
(independent) averaging over c can still be requested at the next line. When an automatically generated angle set is
used for powder averaging in systems with orientational symmetry, one can use the command line options –oct and
–hemi to specify this symmetry.
Prefixing the filename or n with the circumflex character ( ) effectively swaps a and c. The three columns of the two-

angle file are understood in this case as c b w, while additional averaging, if requested at the n_gamma line, is performed
over a. Similarly, if n is given, c will be kept constant, while the number of crystallites given at the next line will be
interpreted as the number of steps in a to go through.
For a single crystallite calculation, the orientation of the crystallite is specified as a b c directly on the line (the

angles should be given in degrees in this case).

n_gamma n

The total number of values of the Euler angle c to average over (in addition to the averaging requested at the
EulerAngles line). If n > 1, the program may choose a larger number (if this speeds up the calculation). The default
value is 1. See also the circumflex switch option for the EulerAngles line.

line_broaden(Hz) Lb1 [Gb1] (for 1D experiments)
Lb1 Lb2 [Gb1 Gb2] (for 2D experiments)
Line broadening in each dimension. Lb — Lorentzian, Gb — Gaussian. The default values are all zero.

zerofill N1 [N2]
Zero-fill dimension i up to at least Ni points.

FFT_dimension [1[c]] [2] [ppm]
Example:

Dimensions to be Fourier-transformed on the output. If the option ppm is specified, the first (labeling) column of the
output data file will be given in ppm units rather than kHz. The option c invokes the cosine transform instead of the
regular FT in the first dimension, resulting in the pure phase spectra. Since the cosine transform does not distinguish
positive and negative frequencies, the spectrum should be recorded in the frame where all observed frequencies have
the same sign. Furthermore, since the cosine transform produces a symmetric spectrum, only half of it is saved in the
output file(s).

options opt1 opt2 . . .

Example:

Command line options can be given here in the same way as at the command line itself. The options given on this line
are set prior to the ones given at the command line itself, so that the latter will override the former in case of a
conflict. This line is optional.

a name Any name composed of alphanumerical characters and beginning with a letter; internal variables (i.e., those with predefined meanings and
names) additionally contain at least one underscore character to distinguish them from the user-defined variables.
b list-of-values is a MATLAB-style notation for a numerical vector. It can be constructed of explicit numerical values, value ranges, or both.

The format of a value range is start_value:step:end_value. A unit step can be omitted, so that is equivalent to . For example,
is a list-of-values composed of the following five numbers: The following notation is used to generate n

copies of the same value: value: :n. The list of values will be loaded from a file if the file name is specified instead of the numerical
constants.
c expression is an algebraic expression composed of numerical constants, variables, the pi constant, and common mathematical functions (see Table

A4).
d Vectorized notation is allowed. The notation is essentially a macro of the form A[list-of-x-values]B[list-of-y-values]C. . ., where A, B, C . . . are any

groups of characters. The macro is expanded as Ax1By1C. . . , . . . AxNByNC. . . , where x1. . .xN and y1 . . . yN are the elements from the list-of-values.
For example, a single construct actually stands for 101 declarations.
e Any line in the file may be (optionally) ended with a comment that starts with a non-numeric character, e.g., the chemical name of the atom.

An entire line will be considered a comment if it begins with a non-numeric character.
f Tensor parameters are defined according to Eqs. (17)–(19). Euler angles (PC) should be given in degrees.
g A sequence of nuclei such as can be specified as . A reverse order is also possible: the sequence can be specified

as .
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Table A2
Command line options

Output control

–h keyword Search the manual for the information on the keyword. The keyword can be a part of a main input file line header, an internal
variable, an option, or a topic. When this option is given, the input file name may be omitted. The option is currently not
functional.

–autoconfig Measures and tunes the performance of various algorithms. The results are saved into file, which should be
placed into the SPINEVOLUTION home directory. Usage:

–t Print the results of the calculation to the terminal instead of the disk file(s).

–s Show the experiment, but do not perform the simulation. Among other useful diagnostic information, the option displays all
interactions present in the system and all the pulse sequences as they were interpreted and processed by the program. We
recommend running every new input file with this option prior to performing the actual simulation. The option is also useful
for converting atomic coordinates to the dipolar tensor parameters, which could be used, for example, to construct CSA
tensors that have known orientation with respect to the chemical bonds in the molecule, or as input parameters to run the
same simulation with SIMPSON.

–nname Use name instead of the name of the main input file to construct the names of the output files (name_re.dat, name.par, etc).

–to Transpose the output data matrices (with respect to the default format).

–dwnm. . . Include the pulse sequences n, m, . . . in the calculation of the time variable that makes up the first column of the output file and
labels the data in this dimension. Only the first sequence of the dimension is included by default.

–pwr[n] Write the powers of all pulses on channel n into name.pwr. The option can be used only in addition to the –s option.Normally, the
output produced by –pwr has two columns: time at the start of a pulse (measured from the start of the experiment), and the RF
power during the pulse. Use –x0 to suppress the first column and obtain a file suitable for use as a power shape pulse program.

–s0 Suppress diagnostic suggestions by the program.

–x0 Suppress the first (labeling) column in the output data.

–vn Set the level of verboseness of the output to the terminal during the calculation. n should be an integer between 0 and 4. The
default level is set according to the size of the problem.

–vclk Print the total CPU time taken by the simulation.

–vv Verbalize the values of all variables during the simulation.

–vp Verbalize the values of all parameters (active variables) during the simulation.

–vr Verbalize the Fourier coefficients of the dipolar, CSA, and quadrupolar interactions for each crystallite during the simulation.
(Eq. (30))

–ahs Compute and print to the terminal the (exact) average Hamiltonian for one period, n sð Þt sð Þ
seq, of the pulse sequence s.

–decimaln Set the number of digits of the floating-point numbers written to the output files.

–convert Converts any text file produced by a text editor that does not comply with the Unix convention for the new line notation.
Executing

filename

overwrites the file filename by the converted file, where all CR characters have been either removed, or converted to the LF
characters.

Input control

–pcn Set the basic phase shift for the phase cycling to 360�/n. The default value of n is 4.

–idX Set the ‘‘maximum power’’ level to X kHz. All pulses given with power larger than X will be treated as ideal delta pulses; the
default value is 499 kHz.

–rminr Set the smallest admissible distance between two nuclei in the spin system, Å; the default is 0.1 Å.

–oct Restrict the powder averaging to an octant or a hemisphere. The options can be used only with automatically generated
crystallite sets, i.e., when the format [ ]n is used at the EulerAngles line.–hemi

–eulerfile The Euler angles file to use for powder averaging. If this option is given, the EulerAngles line in the input file is ignored.

–gamman The number of c angles to step through in the powder average. This option overrides the number of c-steps given at the
n_gamma line.

–varX Declare a variable (or a set of variables if X is a file name). This is equivalent to adding variable X line to the Variables section
of the main input file. The variables declared at the command line are calculated before the ones declared in the main input file.

Process control

–oes Observe each step, i.e., calculate the requested observable(s) after each pulse during the experiment. The pulse sequence of the
experiment must be zero-dimensional. This option adds another dimension to the experiment.

(continued on next page)
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Table A2 (continued)

–splitn Carry out the simulation via n independent processes. This is accomplished by dividing the angle set for the powder averaging
into n parts and starting a separate process for each part. The option is to be used on a multi-processor computer or a
computer cluster (which has to be configured to support automatic process migration). When there is strong disparity between
the processors on the cluster, it may be helpful to set n much larger than the total number of CPU�s in the cluster.

–savemem Use algorithms that economize computer memory usage, possibly sacrificing some efficiency.

–d0 Disable propagator diagonalization for the density matrix propagation; use only regular matrix multiplication

–lv0 Disable all Liouville space based algorithms

–m0 Disable the g-COMPUTE algorithm and use matrix multiplication for propagation

–t0 Disable the ‘‘turbo’’ algorithm, which uses the elementary propagators to construct the RF cycle propagators. This is
occasionally helpful in situations when accuracy problems are observed.

–gsn Use n slices for PFG averaging (n must be odd); the default is 41.

–szn When g-COMPUTE method is used, the signal is computed in the frequency domain. While the spectral width in such a
calculation is fixed by the dwell time (i.e., by the pulse sequence), the number of the frequency bins can be chosen
independently, according to the required precision. This number is set to 2n by the –szn option.

–lpX Set the low-pass filter for the acquisition during g-COMPUTE to X kHz. By default, the filter is turned off.

–fft1 By default, the first point of the signal is divided by 2 before its Fourier transform is computed. The option prevents this behavior.

–spc[i[,j]] Scale the signal (all data points obtained in the experiment) to make the value of the c-component (c= x,y,z) of the data point
(i, j) equal 1; the scaling is applied before FFT. Example: (which is the same as ).

–dtX Set dtmax to X microseconds. dtmax is the maximum allowed step that may be taken during the integration of the equation of
motion. Whenever the integration is carried out through the calculation of the cumulative products of exp(�iHkDtk) or
exp(�iLkDtk) factors, dtmax sets the upper limit to the step size Dtk. In MAS experiments, the default value of dtmax is 2 ls. One
may want to change this setting, for example, to verify convergence or to speed up the calculation. The steps of 1–5 ls give
reasonably accurate results for most MAS experiments. The default dtmax for static experiments is infinity, which sometimes
has to be changed to a finite value in the simulations that involve relaxation.

Optimization control

–fnfname Specifies the name of the fit data set; fname will be used instead of the name of the main input file to construct the names of the
input files for data fitting (fname_re.wht, fname_re.fit, etc.).

–fbbname Specifies the name of the batch-fit file and turns on the batch fit mode. The file bname should contain the list of names of the fit
data sets (as in the –fn option) that have to be fit. The same names will be used to save the results (the .par and .jnl files). The
initialization of the fit parameters during a batch fit is performed as follows. If a grid of initial conditions is specified for the fit
parameters, then, for each fit data set, the residual sum of squares (RSS) is evaluated at all grid points. The point with the
lowest RSS found is used as the initial condition for the optimization of this data set. Instead of, or in addition to this
initialization from the grid, individual initialization for each fit data set can be used: see –binit option. If neither grid, nor –binit
option are specified, the same starting point is used for all fits.

–binit Turns on the batch initializationmode. The option can be used only in the batch fitmode (i.e. togetherwith the –fb option). In this
mode, the file fname.par is loaded for each fit data set fname prior to fitting the data from this set. The file may contain initializing
expressions for any fit parameters and constants. On the completion of the fit, the file is overwritten with the results.

–lm Use Levenberg–Marquardt (LM) method for data fitting (which is usually inferior to the default method, NL2SOL). The
LM implementation used in SPINEVOLUTION is a combination of MINPACK codes developed at Argonne National
Laboratory [76].

–powell Use Powell method for data fitting, which is usually much slower than the default method.

–vf Verbalize intermediate results during data fitting.

–vrss Print the residual sum of squares to the terminal whenever this function is evaluated.

–f0 Do not perform the optimization but compute the residual sum of squares.

–po The ‘‘penalties only’’ option, which directs the program to minimize the sum of squares of the penalties only (ignoring the .fit
files if any).

–l0 Suppress checking the correctness of the first (labeling) column in the .fit and .wht files.

–pertx When a local minimum is reached, perturb each fit parameter by adding a uniformly distributed random number from the
[�x,x] interval and continue the optimization.

–rpertx When a local minimum is reached, perturb each fit parameter ai by adding a uniformly distributed random number from the
[�x|ai|, x|ai|] interval and continue the optimization.
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Table A3
Internal variablesa

The system

H1_freq Spectrometer proton frequency, MHz

spinning_freq Spinning frequency, kHz

X_i Atomic coordinates of the nuclei
Y_i
Z_i
cs_iso_i Chemical shift tensor (Xi/2p) parametersb

cs_ani_i
cs_asy_i
cs_alpha_i
cs_beta_i
cs_gamma_i

j_iso_i_j j-coupling (Jij) parametersb

j_ani_i_j
j_asy_i_j
j_alpha_i_j
j_beta_i_j
j_gamma_i_j

quad_ani_i Quadrupolar interaction tensor ðvi ~V
iÞ parametersb

quad_asy_i
quad_alpha_i
quad_beta_i
quad_gamma_i

T1ZQ_i_j_s Longitudinal and transverse relaxation times, ms: zero-quantum, single-quantum, double-quantum, and X-quantum (the last
term denotes all other coherences). These relaxation times are defined as analogs of the T1 and T2 constants in the Bloch
equations. Namely, the T1 variables are defined as one-halves of the inverse rate constants for the specified transitions (e.g.,
flip-flops of spins i and j in the case of T1ZQ_i_j_s) while the T2 variables are defined as the inverse decay rate constants of the
corresponding coherences. Each elementary pulse sequence is assigned its own set of relaxation parameters.

T1SQ_i_s
T1DQ_i_j_s
T1XQ_s
T2ZQ_i_j_s
T2SQ_i_s
T2DQ_i_j_s
T2XQ_s

relax_model_s Relaxation model to be used for pulse sequence s. Values: 0—no relaxation, 1—the simple model, 2—the full model.

The Pulse Sequence

pulse_n_s_p Pulse duration, ls (for PFG pulses, n is the number of the channel G)

power_n_s_p RF parameters: power, kHz; phase, degrees; frequency offset, kHz
phase_n_s_p
freq_n_s_p

grad_s_p PFG, Gs/cm

grad_offs Gradient slice offset, cm. Declaration of this variable directs the program to compute only one gradient slice (at the specified
offset).

tsf_s Time, power and frequency offset scaling factors, and phase and frequency offset shifts for a given sequence. These variables
modify the RF cycle of the sequence as a whole (rather than pulse by pulse):
tnpulseðs; pÞ ¼ tsf s � pulse n s p
xn

RFðs; pÞ=2p ¼ psf n s � power n s p
/n(s, p) = phase_n_s_p + phs_n_s
xn

off ðs; pÞ=2p ¼ fsf n s � freq n s p þ frs n s

psf_n_s
fsf_n_s
frs_n_s
phs_n_s

The default value for the scaling factors is 1, and for the shifts is 0. Scaling the power does not affect whether the pulse is
interpreted as ideal or not (see the –id option).

(continued on next page)

Table A2 (continued)

–shaken Perform n ‘‘shake-downs’’ (see the previous two options) before accepting the minimum. The options –rpert and –pert specify
the exact mode in which the parameters are perturbed. The default value of n is 0. The default mode is –rpert with x = 0.1.

–covmat Compute the covariance matrix for the fit parameters at the minimum. The results will be saved in the file name.cov

–confint[p] Compute the p-level confidence intervals for each fit parameter. The default p value is 95%. The results will be saved in the file
name.cls
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Table A3 (continued)

RF_swb_i_s RF switchboard (1–on, 0–off); the default is 1. This variable may be used to manipulate the spins individually, which may be
required, for example, to prepare some special initial state or to produce an ideal selective pulse. Currently, this option cannot

be used for ideal pulses.

zfilter_s If set to 1, prescribes to annihilate all non-diagonal elements of the density matrix during the zero-length sequence s.

select_s A matrix specifying coherence orders to select during the zero-length sequence s. All other coherences are destroyed. Each
column of the matrix selects a certain coherence order; the elements of the column specify the constituent coherence orders in
each spin species. This is an alternative to explicit phase cycling for coherence pathway selection.

gsize_s Group size for the sequence s

Other variables

r_k The kth bond length, Å; see the bond_len_nuclei line.

theta_k The kth bond angle, degrees; see the bond_ang_nuclei line.

phi_k The kth torsion (dihedral) angle, degrees; see the tors_ang_nuclei line.

group_k_R The Euler rotation angles, degrees, and the translation vector, Å, for the kth group; see the groups_nuclei line.
group_k_T These variables must be declared as row- or column-matrices.

alpha_CR The Euler angles (radians) defining the orientation of the (only) crystallite, or molecule, in the R or L frame.
These variables can be used, for example, to perform powder averaging according to some analytically
defined scheme.

beta_CR
gamma_CR

ave_wht Weights of the distribution (see ave_par in Table A1)

ppm_ref_offs_n Dxn
ref=2p, kHz (Eq. (3))

elb_d Exponential and Gaussian line broadening in dimension d; same variables as given at the line_broaden(Hz) line
glb_d

sample_L Effective sample length along the PFG axis, cm (Eq. (36)); the default is 1 cm.

signal_sf Scaling factor of the output signal; the default is 1.

signal_ph Phase correction of the output signal, degrees; the default is 0.

AFC_TOL The convergence tolerances for NL2SOL (the default optimization/non-linear regression routine): absolute
function convergence, relative function convergence, convergence in the parameter space, false convergence
[73,74].

RFC_TOL

XC_TOL

XF_TOL

fm_TOL Levenberg–Marquardt optimization routine convergence tolerance

RDX_FDJ Relative changes in the fit parameters to use for the forward-difference calculations of the Jacobian matrix
during the optimization (FDJ), and the covariance matrix computation (FDC) [73,74].RDX_FDC

a In variables names: i and j—spins, n—channel, s—pulse sequence, p—pulse in a pulse sequence.
b The isotropic value of the tensor and its anisotropy are in kHz; the Euler angles (PC) are in degrees.

Table A4
Functions recognized in the Variables section

x�y x to the yth power
pi the p constant
f(x) Elementary functions: sqr, sqrt, sin, cos, tan, asin, acos, atan, cosh, sinh, tanh, exp, ln, log10
abs(x) Absolute value of x
sign(x) The sign of x
step(x) The step function
chebn(x) Chebyshev polynomial of order n
ceil(x) The ceiling function: the smallest integer greater than, or equal to x

floor(x) The floor function: the largest integer less than, or equal to x

round(x) Round x to the nearest integer
trunc(x) Truncate the fractional part of x
arg(x,y) The argument of the complex number x + iy
hypot(x,y) The Euclidean distance function,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
remainder(x,y) The remainder function, x � ny, where n is the integer nearest to the exact value of x/y; if |n � x/y| = 1/2 then n is even
negpen(x) Negative penalty function: returns zero if xP 0, and x2 if x < 0
mul(X,Y) Elementwise multiplication of the matrices X andY
div(X,Y) Elementwise division of X byY
transpose(X) Transpose of X
reshape(X,M,N) Reshapes matrix X into an M by N matrix
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