
THE JOURNAL OF CHEMICAL PHYSICS 135, 134509 (2011)

Proton-driven spin diffusion in rotating solids via reversible
and irreversible quantum dynamics

Mikhail Veshtorta) and Robert G. Griffinb)

Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA

(Received 8 June 2011; accepted 15 August 2011; published online 7 October 2011)

Proton-driven spin diffusion (PDSD) experiments in rotating solids have received a great deal of at-
tention as a potential source of distance constraints in large biomolecules. However, the quantitative
relationship between the molecular structure and observed spin diffusion has remained obscure due
to the lack of an accurate theoretical description of the spin dynamics in these experiments. We start
with presenting a detailed relaxation theory of PDSD in rotating solids that provides such a descrip-
tion. The theory applies to both conventional and radio-frequency-assisted PDSD experiments and
extends to the non-Markovian regime to include such phenomena as rotational resonance (R2). The
basic kinetic equation of the theory in the non-Markovian regime has the form of a memory function
equation, with the role of the memory function played by the correlation function. The key assump-
tion used in the derivation of this equation expresses the intuitive notion of the irreversible dissipation
of coherences in macroscopic systems. Accurate expressions for the correlation functions and for the
spin diffusion constants are given. The theory predicts that the spin diffusion constants governing
the multi-site PDSD can be approximated by the constants observed in the two-site diffusion. Di-
rect numerical simulations of PDSD dynamics via reversible Liouville-von Neumann equation are
presented to support and compliment the theory. Remarkably, an exponential decay of the difference
magnetization can be observed in such simulations in systems consisting of only 12 spins. This is a
unique example of a real physical system whose typically macroscopic and apparently irreversible
behavior can be traced via reversible microscopic dynamics. An accurate value for the spin diffusion
constant can be usually obtained through direct simulations of PDSD in systems consisting of two
13C nuclei and about ten 1H nuclei from their nearest environment. Spin diffusion constants com-
puted by this method are in excellent agreement with the spin diffusion constants obtained through
equations given by the relaxation theory of PDSD. The constants resulting from these two approaches
were also in excellent agreement with the results of 2D rotary resonance recoupling proton-driven
spin diffusion (R3-PDSD) experiments performed in three model compounds, where magnetization
exchange occurred over distances up to 4.9 Å. With the methodology presented, highly accurate
internuclear distances can be extracted from such data. Relayed transfer of magnetization between
distant nuclei appears to be the main (and apparently resolvable) source of uncertainty in such mea-
surements. The non-Markovian kinetic equation was applied to the analysis of the R2 spin dynamics.
The conventional semi-phenomenological treatment of relxation in R2 has been shown to be equiva-
lent to the assumption of the Lorentzian spectral density function in the relaxatoin theory of PDSD.
As this assumption is a poor approximation in real physical systems, the conventional R2 treatment
is likely to carry a significant model error that has not been recognized previously. The relaxation
theory of PDSD appears to provide an accurate, parameter-free alternative. Predictions of this the-
ory agreed well with the full quantum mechanical simulations of the R2 dynamics in the few simple
model systems we considered. © 2011 American Institute of Physics. [doi:10.1063/1.3635374]

I. INTRODUCTION

Spin diffusion in its various forms can be loosely de-
fined as irreversible transport of spin order by the mutual flips
of dipolar-coupled nuclei. First described by Bloembergen,1

it has been studied by many authors over the years and is
now ubiquitous in magnetic resonance experiments as a major

a)Present address: Department of Biochemistry and Molecular Biophysics,
Columbia University, 701 West 168th Street, New York, NY 10032, USA.

b)Author to whom correspondence should be addressed. Electronic mail:
rgg@mit.edu.

mechanism for nuclear relaxation and as a common means to
achieve polarization transfer. In the latter capacity, spin dif-
fusion can be used to characterize the spatial proximity of
the sites exchanging polarization and thus provides a way
to correlate resonances for spectral assignments and to ob-
tain direct structural information. Recently, these types of ex-
periments have emerged as a particularly suitable approach
for structural studies of membrane proteins, amyloid fibrils,
and other biomolecular systems. In fact, spin diffusion exper-
iments provided the key sets of distance constraints for ma-
jority of the protein structures determined with the solid-state
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NMR methods.2–8 In the light of these recent successes, and
in the hopes of further refinement of these methods, spin dif-
fusion presents a highly promising subject for detailed theo-
retical and quantitative exploration.

Two main classes of spin diffusion experiments are cur-
rently used to obtain structural constraints in the studies men-
tioned above. In one case, represented by the CHHC, NHHN,
and NHHC experiments,9–11 the magnetization exchange fur-
nishing the structural information occurs between the proton
nuclei, while it is initiated and detected via the low-gamma
nuclei (13C or 15N). In the other case, known as the proton-
driven spin diffusion (PDSD),12–14 the polarization exchange
occurs among the low-gamma nuclei, but its mechanism re-
lies substantially on their coupling to the surrounding pro-
tons. The layout of the latter experiments and the way their
results are incorporated into structure calculations closely re-
sembles the NOESY protocol in liquids.15, 16 The primary dif-
ference is that the distance constraints obtained are among the
low-gamma nuclei. (For the sake of brevity, we will refer to
these nuclei as simply 13C, although the statements will be
also applicable to 15N and possibly other nuclear species in
general.)

The original PDSD experiments12, 13 were performed
with no radio-frequency (RF) fields applied during the spin
diffusion period. Costa et al.,17 and subsequently others18, 19

have suggested applying a weak RF field at the proton fre-
quency to increase the overall efficiency of the magnetiza-
tion transfer. New names, RAD (RF assisted diffusion)19 and
DARR (dipolar-assisted rotational resonance),18 were sug-
gested for this experiment when the applied RF field satisfied
the rotary resonance recoupling20 (R3) condition (ωRF = ωR

or ωRF = 2ωR). Although the name RAD is practical for dis-
tinguishing the two modes of conducting PDSD (with and
without the 1H RF field), we will use the term PDSD univer-
sally because applying RF at the proton frequency does not
change the principal mechanism of the polarization transfer,
as we demonstrate in the present work. With or without an
applied RF field, PDSD is essentially a spin-spin relaxation
process, as opposed to a coherent transfer due to a recoupled
first21–25 or second26–28 order average Hamiltonian. Moreover,
one can envision a whole class of RF-assisted PDSD experi-
ments with diverse 1H RF field sequences designed – possibly
with the methodology described in the present work – to ac-
commodate various experimental needs. Specific experiments
in this class should probably have compound names such as
R3-PDSD and MIRROR-PDSD.29

Neither R3-PDSD nor conventional (no-RF) PDSD ex-
periments require high-power RF fields for either decoupling
or recoupling, so very long mixing times may be used to
achieve polarization transfer over relatively long distances.
In addition, PDSD does not suffer from the dipolar trunca-
tion effect, where polarization transfer between weakly cou-
pled nuclei is obstructed by the presence of strongly cou-
pled nuclei.30, 31 The combination of these two features makes
PDSD particularly promising for providing information on a
wide range of interatomic distances. However, due to the lack
of an accurate theoretical description of these experiments,
the quantitative relationship between molecular structure and
the observed spin diffusion has remained obscure.

A standard theoretical approach to the description of
PDSD, since it is a relaxation process, would be with the
methods that formally belong to the realm of the non-
equilibrium statistical mechanics.32 In this framework, the dy-
namics of a certain small set of “relevant” observables is de-
scribed by an equation of motion that does not involve any
other observables.33 If this (kinetic) equation is exact, it must
necessarily be non-Markovian. However, with the applica-
tion of time coarse-graining it becomes Markovian and irre-
versible, and then it is usually referred to as a master equa-
tion. In the case of PDSD, the relevant degrees of freedom are
assumed to be the longitudinal magnetizations 〈Ikz〉 of each
participating 13C (or 15N) spin and the equation of motion is

Ṁz = W Mz, (1)

where Mz is the column-vector of the magnetizations, and W
is the matrix of spin diffusion rate constants, or the kinetic
rate matrix.

Several authors have treated spin diffusion in terms of
a master equation. Suter and Ernst34 and Henrichs et al.35

discussed PDSD in static solids. Kubo and McDowell36 con-
sidered the case of rotating solids in magic angle spinning
(MAS) experiments. In order to obtain quantitative estimates
of the spin diffusion rate constants these authors had to re-
sort to various, often very coarse approximations, particularly
assuming a certain shape for the spectral density functions.
Kubo and McDowell36 also assumed that the spin diffusion
constants do not depend on the orientation of the crystallite in
the MAS rotor (while in reality they vary between zero and
some maximum value).

While making this kind of approximations was helpful
for obtaining qualitative insights, and, perhaps, was the best
one could do at the time in terms of quantitative estimates,
the situation has changed since then. The power of available
computational resources has grown immensely and efficient
numerical simulation software have been developed,37 open-
ing up new possibilities in approaching this problem. Two ex-
treme strategies can be envisioned to this end. On one hand,
one could try to simulate spin diffusion using the full (re-
versible) Liouville-von Neumann equation of motion, closely
mimicking the actual experiment. One the other hand, one
could rely on the master equation (1) with the spin diffu-
sion rate constants obtained via numerically computed spec-
tral density functions. If necessary, a suitable non-Markovian
kinetic equation can be used instead of the master equation.
These two approaches are complimentary in many ways, and
we explore them both in this article, as well as a hybrid ap-
proach, where the spin diffusion constants are computed via
direct simulations of the (reversible) PDSD dynamics. An
implementation of the master equation strategy has been re-
ported by Dumez and Emsley38 while our manuscript was in
preparation for publication. They have used numerically com-
puted spectral densities but combined them with the approx-
imate expressions for the spin diffusion constants given by
Kubo and McDowell,36 which lead to satisfactory but mixed
results.

In spite of much progress in the area, numerical prop-
agation of the density matrix on modern day computers
cannot generally accommodate spin systems of more than
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13 nuclei, unless one neglects the development of high order
coherences.39–42 Hence, it is not obvious a priori that exact
numerical simulations should be generally effective for the
description of spin diffusion in real experimental systems (in
this study – biological solids). In peptides and proteins, the
1H nuclei typically form a tightly coupled network extending
throughout the whole protein or the whole crystal. The low-
gamma nuclei are coupled to this network, which facilitates
the exchange of their magnetization during PDSD. In this situ-
ation, it is not possible to identify a small isolated spin system
where PDSD actually occurs. Thus, we are potentially facing
at least two major problems with using exact simulations to
model PDSD.

First, as commonly assumed in statistical mechanics, a
typical macroscopic behavior (e.g., relaxation) can be ob-
served only in a process that involves a bath with a very large
number of degrees of freedom. In PDSD, these degrees of
freedom are provided by the spin states of the protons. If one
attempts a full quantum-mechanical description of this pro-
cess, the bath must be included in the simulation as a part
of the quantum-mechanical system. Thus, a model system
for PDSD is expected to include a large number of protons,
in addition to at least two, but typically many, low-gamma
nuclei exchanging magnetization. Given the tight restrictions
on the system size, it would seem unlikely that such simula-
tions could successfully reproduce the relaxation dynamics of
PDSD (i.e., Eq. (1)). To the best of our knowledge, this would
be the first example of a real physical system, where a relax-
ation process can be simulated through reversible dynamics,
i.e., in its full quantum mechanical detail.

Second, it is reasonable to assume that the protons nearest
to the low-gamma nuclei exchanging magnetization have the
greatest effect on the dynamics of the exchange. However, if
the model system includes only the protons from the local en-
vironment, then a large number of strong dipolar interactions
of these local protons with the remainder of the proton net-
work are neglected, as well as a very large number of 13C–1H
interactions that are of the same order of magnitude as most of
the remaining 13C–1H interactions. This may potentially lead
to inaccurate estimation of the spin diffusion constants or the
exchange dynamics in general.

In what follows, we show that these potential issues are
not insurmountable and that RF-assisted PDSD experiments
in biological solids can be accurately simulated by both hy-
brid and the spectral densities methods. We present a care-
ful theoretical and numerical exploration of various aspects of
PDSD, which forms the basis for the methodology of the sim-
ulations and deepens our general understanding of this phe-
nomenon, including its generalization to the non-Markovian
regime. The theory applies without change to PDSD with a
periodic 1H RF field of any form. The experimental data pre-
sented are for 2D R3-PDSD experiments in serine and two
tripeptides, Gly-Gly-Val dihydrate (GGV) and Ala-Gly-Gly
monohydrate (AGG). The simulations are limited to the cases
of the conventional (no-RF) PDSD and the CW PDSD (con-
stant phase and amplitude). Through numerical simulations,
PDSD in rotating solids can be seen as a “macroscopic” pro-
cess that can be studied in full microscopic detail via re-
versible dynamics. Although not pursued in the present work,

recognition of this important fact may lead to the develop-
ment of new models that enhance our understanding of var-
ious fundamental issues concerned with this duality, such as
irreversibility,43 ergodicity, quantum chaos,44 decoherence,45

entanglement,45 and quantum computing.

II. THEORY

A. Spin diffusion between two nuclei

The rotating frame Hamiltonian of proton-driven spin
diffusion between two 13C nuclei in a MAS experiment in-
cludes the isotropic and anisotropic chemical shift, the dipolar
coupling, and the radio-frequency field terms:

H (t) = HCS(t) + HD(t) + HRF, (2)

HCS(t) =
2∑

i=1

(
ωiso

i + ωCSA
i (t)

)
I1z+

∑
i

(
ωiso

i + ωCSA
i (t)

)
Siz,

(3)

HD(t) = DCC
2,0(t)

1√
6

(3I1zI2z − I1 · I2)

+
∑
i<j

D
HH[ij ]
2,0 (t)

1√
6

(3SizSjz − Si · Sj )

+
∑
i,j

D
CH[ij ]
2,0 (t)

2√
6
IizSjz, (4)

HRF(t) =
∑

i

ωRF(t)(Six cos φ(t) + Siy sin φ(t)), (5)

where DCC
2,0(t), DHH[ij ]

2,0 (t), and D
CH[ij ]
2,0 (t) are the m = 0 spher-

ical components of the corresponding second-rank dipolar
coupling tensors. Their time dependence due to MAS can be
expressed as

D2,0(t) =
2∑

k=−2

D
(k)
2,0e

ikωRt , (6)

with the vanishing k = 0 components and D
(−k)
2,0 = D

(k)∗
2,0 .

The values of the components depend on the orientation
of the molecule in the MAS rotor and scale as r−3

ij . The
chemical shift anisotropy (CSA) terms in Eq. (3) are also
proportional to m = 0 spherical components of orientation-
dependent second-rank tensors and thus have the time depen-
dence of the same form as the dipolar terms. The RF term
(Eq. (5)) is assumed to be periodic, with the period of one ro-
tor cycle (in general, it may simply be commensurate with the
length of the rotor cycle). The isotropic 13C–13C J-coupling
may also be present in the Hamiltonian. Its effects on spin
diffusion are typically very small but may be non-negligible.
The flip-flop (off-diagonal part) of J-coupling is identical to
that of the dipolar coupling, while the diagonal part is irrele-
vant for the spin diffusion dynamics (see below). Therefore,
if necessary, J-coupling can be accounted for through the D

(0)
2,0

component of D2,0(t).
The initial density matrix ρ(0) and the observable are typ-

ically taken as the difference longitudinal magnetization of

Downloaded 07 Oct 2011 to 160.39.5.118. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



134509-4 M. Veshtort and R. G. Griffin J. Chem. Phys. 135, 134509 (2011)

the carbon spins, which we will denote as Qz for brevity:

ρ(0) = I1z − I2z = Qz. (7)

For a qualitative understanding of the problem at hand, it is
helpful to notice that it is equivalent to the problem of a single
13C nucleus subjected to a weak RF field and coupled to a
network of protons. Indeed, with the help of the fictitious spin
notation,46

I (23)
z = 1

2
(I1z − I2z), (8)

I (14)
z = 1

2
(I1z + I2z), (9)

I (23)
x = 1

2
(I1+I2− + I1−I2+), (10)

etc., where the superscripts “23” and “14” refer to the two
pairs of the four Zeeman basis states of the two-spin system,
the Hamiltonian given by Eq. (2) can be written as

H (t) = ωCS
� (t)I (23)

z + D(t)I (23)
x +

∑
i

D
(23)
i (t)I (23)

z Siz

+HCS/H(t) + HHH(t) + HRF(t), (11)

where

ωCS
� (t) = (

ωiso
1 − ωiso

2

) + (
ωCSA

1 (t) − ωCSA
2 (t)

)
= ωiso

� + ωCSA
� (t), (12)

D(t) = 1√
6
DCC

2,0(t), (13)

D
(23)
i (t) = 1√

6

(
D

CH[i1]
2,0 (t) − D

CH[i2]
2,0 (t)

)
, (14)

HHH(t) =
∑
i<j

D
HH[ij ]
2,0 (t)

1√
6

(3SizSjz − Si · Sj ). (15)

The “14” part of the HCS(t) term,

H
(14)
CS (t) = ωCS

� (t)I (14)
z , (16)

the I1zI2z part of the HCC(t) term, and the “14” parts of HCH(t)
are not included in Eq. (11) since they commute with the rest
of the Hamiltonian, as well as with the observable,

Qz = 2I (23)
z , (17)

and, therefore, do not affect the signal. The term involving
I (23)
x can be interpreted as a sum of two RF fields, applied

with the offsets ωR and 2ωR (see Eq. (6)). In the absence
of the protons, Eq. (11) becomes the off-rotational resonance
Hamiltonian,46 which would become resonant when ωiso

�

equals ωR or 2ωR . In the presence of a single proton, Eq. (11)
becomes a DARR model Hamiltonian.18, 47 In the presence
of multiple protons but in the absence of HHH(t), it be-
comes a multi-proton DARR Hamiltonian. However, the H–H
couplings present in the full PDSD Hamiltonian completely
change the dynamics, making it of the relaxation type rather
than coherent and rendering all above-mentioned simple mod-
els inapplicable in this situation. Qualitatively, one can see
from Eq. (11) that the dynamics will be that of a single spin
in the presence of weak RF and strong transverse relaxation.

In order to obtain a correct kinetic equation for PDSD, we
will use the interaction frame defined by the following sum of
terms:

H0(t) = HCS(t) + HCH(t) + HHH(t) + HRF(t), (18)

which includes all terms of the rotating frame Hamiltonian
except for the C–C dipolar coupling:

H (t) = H0(t) + H1(t), (19)

H1(t) = D(t)I (23)
x . (20)

In this frame, the Hamiltonian becomes

HI (t) = U
†
0 (t)H1(t)U0(t), (21)

U0(t) = T exp

{
−i

∫ t

0
H0(t1) dt1

}
, (22)

where T is the Dyson time-ordering operator. The time evolu-
tion in the rotating frame can then be computed as

U (t) = U0(t)UI (t), (23)

UI (t) = T exp

{
−i

∫ t

0
HI (t1) dt1

}
. (24)

Since H0(t) and, therefore, U0(t) commute with Qz, the ex-
pression for the signal is

s(t)= 1

T r
(
Q2

z

)T r
(
ρ(t)Qz

)= 1

T r
(
Q2

z

)T r
(
UI (t)QzU

†
I (t)Qz

)
.

(25)

In other words, the interaction frame density matrix can be
used to compute the signal instead of the rotating frame den-
sity matrix.

With this definition of the signal, the density matrix at
any time can be represented as a sum of two orthogonal terms:

ρ(t) = s(t) Qz + R(t), (26)

〈Qz|R(t)〉 = 0, (27)

where we have used the standard Liouville space definition of
the scalar product,

〈A|B〉 = T r(A†B). (28)

As the evolution is coherent and unitary, the norm of the den-
sity matrix (equal to the sum of absolute squares of all its
matrix elements) is constant. In view of the orthogonality of
the two terms,

‖ρ(t)‖2 = ‖s(t)Qz‖2 + ‖R(t)‖2 = ‖Qz‖2. (29)

Equation (29) shows that, as the signal decays, polarization
flows from the Qz term to the R(t) term. In a system with
many protons, it spreads, through the mediation of dipolar
couplings, over a very large number of coherences in R(t). It
appears that this dissipation of coherences is the fundamental
source of irreversibility of the spin diffusion. We will formu-
late this statement in more precise terms below.

If the Liouville-von Neumann equation,

d

dt
ρ(t) = −i[H (t), ρ(t)], (30)
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is integrated on both sides from 0 to t, and the resulting ex-
pression for ρ(t) is substituted back into Eq (30), one obtains
the (exact) second-order iterated expansion for its derivative:

d

dt
ρ(t) = −i[H (t), ρ(0)] −

[
H (t),

∫ t

0
[H (t1), ρ(t1)]dt1

]
.

(31)

We will use this expression, in the interaction frame defined
above, to compute the time evolution of the signal:

d

dt
s(t) = 1

‖Qz‖2
T r

(
Qz

d

dt
ρI (t)

)

= − 1

‖Qz‖2

∫ t

0
T r(Qz[HI (t), [HI (t1), s(t1)Qz + RI (t1)]])dt1.

(32)

Note that the first-order term vanished due to the identity

T r(A[B,A]) = 0. (33)

The RI (t) term may be large, as measured by its norm (cf.
Eq. (29)), but if it is spread over a large number of coherences,
its contribution to the integral in Eq. (32) is likely to be neg-
ligible. Obviously, the distribution of RI (t) over the various
coherences will not be uniform and will vary with time. Most
notably, the 13C zero-quantum coherences, appearing in the
first-order term in the perturbation expansion of ρI (t), will be
present in significant quantities in RI (t) throughout the whole
time of exchange. However, one can show that in the inter-
action frame chosen, these coherences, together with all odd
order terms in the perturbation expansion of ρI (t) will have
identically vanishing contributions to the integral in Eq. (32).
As no other coherences can be suspected in significantly con-
tributing to this integral, it is reasonable to assume that RI (t)
can be neglected altogether. This assumption is justified by the
agreement of the results of the theory with the experimental
data and with the direct simulations, as will be shown below.
However, the exact conditions of its validity still remain to be
established. In particular, this issue can be explored in detail
with the help of numerical simulations. The importance of the
dissipation of coherences is further illustrated in Sec. VI E.

Thus, neglecting RI (t), we obtain

d

dt
s(t) = −

∫ t

0
�(t ; τ ) s(t − τ ) dτ , (34)

where

�(t ; τ ) = 1

‖Qz‖2
T r

(
Qz

[
HI (t), [HI (t − τ ), Qz]

])
. (35)

We will call �(t ; τ ) a correlation function as it has the form
〈C(t)|C(t − τ )〉, which can be seen by rearranging the com-
mutators in Eq. (35). Under the condition that �(t ; τ ) decays
faster than the signal has time to change noticeably, s(t) can
be taken outside of the integral in Eq. (34). In addition, the
upper integration limit can be extended to infinity if t � τc,
where τc is the characteristic decay time (correlation time).
Assuming that these two conditions are fulfilled, we have

d

dt
s(t) = −s(t)

∫ ∞

0
�(t ; τ )dτ . (36)

As we will see later, �(t ; τ ) is periodic in t, with the period
of one rotor cycle, τR . Hence, if we observe the average of

s(t) over a rotor cycle, it will decay exponentially, with the
constant given by the average of the �(t ; τ ) integral:

kD = 1

τR

∫ ∞

0

∫ τR

0
�(t ; τ )dtdτ . (37)

Note that in the derivation above we did not make any
assumptions about the “bath” being in a state of thermal
equilibrium and never becoming entangled with the ob-
served system, or about the accuracy of any second-order
perturbation expansions, which are typical for the traditional
spin relaxation theory.48, 49 The non-Markovian kinetic
equation (34) was obtained based on a single assumption
discussed above, while the Markovian equation (36) was
obtained with the help of two additional assumptions that are
ubiquitous in the relaxation theory. An alternative formula-
tion of the assumptions leading to the Markovian equation
(via the Fourier or Laplace transform of Eq. (34)) will be
given later, in Sec. VI D. Note that Eq. (34) is similar to
the memory function equation derived using the projection
operator technique,33 but it approximates the difficult to
compute memory function with the correlation function
�(t ; τ ) that can be readily computed numerically.

By substituting the specific expressions for the
Hamiltonian (Eqs. (20) and (21)) and Qz (Eq. (17)) into
Eq. (35), recalling that U0(t) commutes with I (23)

z , rearrang-
ing the commutators under the trace, and performing some
simple algebraic transformations (see Eq. (B1), Appendix B),
we obtain the following expression for the correlation
function:

�(t ; τ ) = 1∥∥I
(23)
z

∥∥2 D(t)D(t − τ )

× T r
(
I (23)
y U0(t, t − τ )I (23)

y U
†
0 (t, t − τ )

)
. (38)

U0(t, t − τ ) in Eq. (38) is the propagator from time t − τ to
time t. We further transform this equation by shifting t by τ

on both sides and using the identity

T r(IyUIyU
†) = 1

4
T r(I−UI+U †) + c.c., (39)

where c.c. is the complex conjugate of the preceding term.
The resulting equation,

�(t + τ ; τ ) = 1

4
∥∥I

(23)
z

∥∥2 D(t + τ )D(t)

× T r
(
I

(23)
− U0(t + τ, t)I (23)

+ U
†
0 (t + τ, t)

) + c.c.,

(40)

now contains propagators in the form more appropriate for
expressing �(t ; τ ) through the zero-quantum coherence decay
(see Eq. (44) below).

The evolution due to the 13C isotropic chemical shift and
CSA differences in Eq. (40) can be computed analytically, as
they can be factored out of U0:

U0(t + τ, t)

= exp
{−iτωiso

� I (23)
z

}
× exp

{− i(φ(t + τ ) − φ(t))I (23)
z

}
UH(t + τ, t), (41a)

U0(t + τ, t) = exp
{−iτωiso

� I (23)
z

}
U ′

H(t + τ, t), (41b)
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where

φ(t) =
∫ t

0
ωCSA

� (t ′) dt ′, (42)

is a periodic accumulated phase function, conveniently pa-
rameterized as

exp{iφ(t)} =
+∞∑

k=−∞
C(k)eikωRt . (43)

The Fourier coefficients in Eq. (43) are most readily com-
puted numerically, as a spectrum of the single quantum coher-
ence evolution due to CSA. An explicit series expansion into
Bessel functions is also available for these coefficients.50, 51

The evolution due to the remaining terms of H0(t) (RF,
CS/H, CH, and HH) can be described via the function

G(t ; τ ) = 1

‖I (23)
+ ‖2

T r
(
I

(23)
− UH(t + τ, t)I (23)

+ U
†
H(t + τ, t)

)
,

(44)

which is the decay of the 13C zero-quantum coherence, nor-
malized to one for τ = 0. Since H0(t) is periodic, G(t ; τ ) is
also periodic in t. We will use the following notation for the
Fourier expansions of G(t ; τ ):

G(t ; τ ) =
+∞∑

k=−∞
Gk(τ )eikωRt , (45)

Jk(ω) =
∫ ∞

0
Gk(τ )e−iωτ dτ . (46)

Substitution of Eqs. (6), (13), (41a), and (43)–(45) into
Eq. (40), followed by a t → t − τ time shift (see Appendix A
for details), yields the following expression for �(t ; τ ):

�(t ; τ ) = 1

2

∑
k,m,n

ω
(n)
D ω

(n+k−m)∗
D eimωRt

× e−i(ωiso
� −nωR+mωR )τGk(τ ) + c.c., (47)

where

ω
(n)
D = 1√

6

2∑
k=−2

D
(k)
2,0C

(k−n)∗. (48)

Integration over t and τ gives an expression for the decay con-
stant:

kD = 1

2

∑
n,k

ω
(n)
D ω

(n+k)∗
D Jk

(
ωiso

� − nωR

) + c. c. (49)

The quantities ω
(n)
D can be recognized as the Fourier com-

ponents of the effective dipolar Hamiltonian in rotational
resonance.46, 52, 53 If Eq. (41b) is used instead of Eq. (41a),
one obtains

kD = 1

12

2∑
n,m=−2

D
(n)
2,0D

(m)∗
2,0 J ′

−n+m

(
ωiso

� − nωR

) + c. c. (50)

In this form of the equation for kD , the CSA effects are de-
scribed through J ′

k(ω). If these effects are absent or negligi-
ble, then J ′

k(ω) coincides with Jk(ω) and Eq. (49) becomes
Eq. (50). As mentioned above, if the isotropic 13C–13C J-
coupling is absent or neglected, the Fourier coefficient D

(0)
2,0

is zero at the exact magic angle. Otherwise, the J-coupling
can be accounted for by using 2π

√
6Jiso for the D

(0)
2,0 value.

Note that the J0(ω)’s contribution to kD is

k
(0)
D =

∑
n

∣∣ω(n)
D

∣∣2
ReJ0

(
ωiso

� − nωR

)
. (51)

If the Hamiltonian of the propagator UH , did not contain the
1H CS terms, it would be invariant with respect to the trans-
formation with the unitary operator

K = 2I1x2I2x

∏
k

2Skx, (52)

which interchanges the |α〉 and |β〉 states for each spin. We
can use this symmetry to show then that G(t ; τ ) is purely real:
By transforming all operators under the trace in Eq. (44) with
K and then transposing the product, one obtains

G(t ; τ ) = 1

‖I (23)
+ ‖2

T r
(
U ∗

H(t + τ, t)I (23)
+ UT

H (t + τ, t)I (23)
−

)
,

(53)

which is identical with G∗(t ; τ ) as can be seen by comparing
with Eq. (44). It follows then that

Gk(τ ) = G∗
−k(τ ), (54)

Jk(ω) = J ∗
−k(−ω). (55)

Note that these symmetries are dependent on the assump-
tion that H0(t) does not contain the 1H chemical shifts. In
real physical systems, these terms are present but their ef-
fects on the zero-quantum lineshapes are small, entailing that
Eqs. (54) and (55) should be seen as approximations. J ′

k(ω)
does not have these symmetries as it contains the effects of
the 13C CSAs.

B. Multi-site spin diffusion

The equations for the spin diffusion among multiple sites
can be obtained using a similar approach. The observables
now are the Ikz operators, the signal is given by the set of
functions

sk(t) = 1

‖Ikz‖2
T r(ρ(t)Ikz), (56)

and the density matrix is represented (via orthogonal projec-
tions onto Ikz operators) as

ρ(t) =
∑

k

sk(t)Ikz + R(t). (57)

The Hamiltonian now includes the chemical shift interactions
for all 13C spins and the dipolar interactions of all possible
spin pairs in the system. In particular, Eq. (20) becomes

H1(t) =
∑
k<l

Dkl(t)I
kl(23)
x . (58)

The Hamiltonian commutes with the sum Ikz, implying that
this sum is conserved in spin diffusion.
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Substituting Eq. (57) into Eq. (31) and neglecting RI (t)
under the integral, we obtain

d

dt
sk(t) = −

∑
l

∫ ∞

0
�kl(t ; τ )sl(t − τ )dτ . (59)

The correlation functions expressions,

�kl(t ; τ ) = − 1

‖Ikz‖2
Dkl(t)Dkl(t − τ )

× T r
(
I kl(23)
y U0(t, t − τ )I kl(23)

y U
†
0 (t, t − τ )

)
, (60)

(for k �= l) and

�kk(t ; τ ) = 1

‖Ikz‖2

∑
l

Dkl(t)Dkl(t − τ )

× T r
(
I kl(23)
y U0(t, t − τ )I kl(23)

y U
†
0 (t, t − τ )

)
, (61)

are derived in Appendix B. The Markovian master equation
(Eq. (1)) follows from Eq. (59) after making two assumptions
analogous to the two-spin case.

Applying Eq. (60) to a system with only two sites and
comparing with Eq (38), one can see that

�(t ; τ ) = −2�12(t ; τ ) = 2�11(t ; τ ) = 2�22(t ; τ ), (62)

where the factor of two comes from

‖Ikz‖2 = 2‖I kl(23)
z ‖2. (63)

To avoid confusion, we will use the following notation:

d

dt
sk(t) =

∑
l

wklsl(t), (64)

wkl = − 1

τR

∫ ∞

0

∫ τR

0
�kl(t ; τ )dtdτ , (65)

reserving the term “spin diffusion rate constant,” or simply the
“spin diffusion constant” for the quantities wkl . The quantities
kD , defined by Eq. (37) and related to wkl as

k
(kl)
D = 2wkl, (66)

(according to Eq. (62)) will be called the “decay constants,”
implying the exponential decay of the difference magnetiza-
tion in a system with two 13C nuclei. Equations. (62) and (66)
are consequences of the fact that the eigenvalues of the
spin diffusion rate matrix for two-site exchange are zero and
−2w12. The former represents the rate of change of the sum
magnetization, and the latter – of the difference magnetiza-
tion.

Thus, in a system with only two spin diffusion sites,
we obtain exactly same dynamics as before. However, in
a system with multiple sites, propagators U0(t, t − τ ) in
Eqs. (38) and (60) will not be the same due to additional
C–H dipolar coupling terms present in H0(t). Nevertheless,
this difference does not appear to be very significant. In-
deed, the trace in Eq. (60) can be represented as a sum
over all possible states of the 13C spins other than k and l.
Each term in this sum will be a trace identical to the one
appearing in Eq. (38), except that its propagators contain
the effects of these additional C–H coupling terms, which
have the form of 1H CSA interactions. As discussed below
(Sec. VI B), we found that the effects of 1H CSA interactions

on R3-PDSD dynamics were very small in all our test cases. It
also seems reasonable to assume that this will be true in gen-
eral, although the accuracy of this approximation may depend
on the specific PDSD experiment. The CSA-like terms due to
the CH couplings are different only in that their size for di-
rectly bonded CH pairs is about 21 kHz, which is much larger
than the typical authentic 1H CSA’s. However, such terms can
be encountered only for protons that are not directly bonded to
the spins k and l, so the effects of these relatively large terms
on spin diffusion are still likely to be small. For the protons
directly bonded to spins k and l, these effective CSA terms
will be typically under 3 kHz. Thus, it appears that �kl(t ; τ )
and wkl are not significantly affected by the presence of other
13C spins in the system and can be computed using the ex-
pressions derived for the two-site spin diffusion.

It follows from Eqs. (60), (61), and (65) that the diagonal
elements of the spin diffusion rate matrix W can be computed
as follows:

wkk = −
∑

l

wkl, (67)

which is consistent with the conservation of the total z-
magnetization during spin diffusion. Note that if we excluded
one or more spins from the set of relevant observables in the
derivation above, Eq. (61) would still contain the terms for
the missed spins, leading to an apparent non-conservation of
the total magnetization.

C. Accounting for spin-lattice relaxation

Relaxation of the 13C longitudinal polarizations due to
coupling to the lattice vibrations is often significant during
PDSD experiments, in which case it must be taken into ac-
count. Assuming that relaxation and spin diffusion are in-
dependent, and that the 13C nuclei do not cross-relax, the
longitudinal magnetizations should obey the following equa-
tion in the presence of relaxation:

Ṁz = W Mz − R
(
Mz − M0

z

)
, (68)

where R is the diagonal relaxation matrix, and M0
z is the vec-

tor of quasi-equilibrium magnetizations for the given experi-
mental conditions, i.e., the RF field applied at the proton fre-
quency, the spinning frequency, etc. Note that due to the nu-
clear Overhauser effect, M0

z is different from the vector of
equilibrium magnetizations for the unperturbed system. The
solution to the inhomogeneous linear Eq. (68) for the initial
condition Mz(0) can be represented as

Mz(t) = �Mz(t) + Mst
z , (69)

where Mst
z is the stationary solution of Eq. (68), and �Mz(t) is

the solution to the homogeneous part of Eq. (68) that satisfies
Eq (69) at t = 0:

�Mz(t) = e(W−R)t (Mz(0) − Mst
z ). (70)

Hence, Mz(t) can be expressed as follows:

Mz(t) = e(W−R)tMz(0) + (1 − e(W−R)t )Mst
z . (71)

Downloaded 07 Oct 2011 to 160.39.5.118. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



134509-8 M. Veshtort and R. G. Griffin J. Chem. Phys. 135, 134509 (2011)

In a 2D PDSD experiment, the first term of Eq. (71) is mod-
ulated by the evolution in the indirect dimension, while the
second term is constant (for fixed mixing time), giving rise
to peaks at zero frequency (axial peaks). By using a two-step
phase cycle that alternates the sign of Mz(0), the second term
is suppressed and only the first term is detected in the ex-
periment. Furthermore, a 2D PDSD experiment can be de-
scribed in terms of the set of initial magnetizations given by
the columns of the unit matrix of the size equal to the num-
ber of sites exchanging magnetization. The idealized signal
in such an experiment is then represented by the following
matrix:

s(t) = e(W−R)t , (72)

which must also be averaged over all possible orientations
present in the sample.

III. DIRECT SIMULATIONS OF PDSD

We start with exploring the question of whether it is
possible to observe the exponential decay of the difference
magnetization (expected for a macroscopic system) in spin
systems amenable to numerical simulations of their full (re-
versible) quantum dynamics. Figure 1 shows simulations of
the magnetization exchange between Cα and Cβ of serine cou-
pled to 5 to 10 nearest 1H nuclei during R3-PDSD in a sin-
gle crystal. The decay curves converge to an exponential de-
cay as the number of protons in the system is increased. The
exponential character of the curves can be evaluated on the
semilogarithmic plot in Fig. 1(b). The initial decay rate is es-
sentially the same for all curves, which means that the decay
constant can be extracted from such simulations in relatively
small spin systems in this case. The exponential decay stops
when a certain degree of magnetization transfer is reached.
It is then followed by chaotic oscillations of magnetization
around some constant value. The amplitude and the mean of
these oscillations decrease with the number of protons in the
system (Fig. 1(c)). The 10-proton curve starts to deviate from
the exponential character after decaying to about 3% of the
initial magnetization in this system.

Figure 2 shows the simulations of exactly the same spin
systems in a PDSD experiment with no RF field applied at
the 1H frequency. The same general features as were seen in
Fig. 1, can be observed in these plots as well. The main differ-
ences are that the decay is slightly slower, and more protons
are necessary for a system in the no-RF experiment to exhibit
a curve of comparable exponential character.

Important additional features of the exchange can be seen
in Fig. 3, where only the first seven rotor cycles are shown
(with the curves finely sampled) and the exchange is between
the Val carboxyl and the Gly 1 carbonyl of GGV for two crys-
tallite orientations that differ only by the value of the Euler
angle γ , which specifies the rotation of the crystallite about
the rotor axis. The correlation time for the zero-quantum co-
herence decay in a pair of carbons with no directly bonded
protons is obviously much longer than in other kinds of pairs.
A CO–CO pair was chosen for this example so that the ini-
tial, non-stationary phase of the decay would be clearly seen;
in other systems, this phase is typically shorter and less pro-

FIG. 1. Magnetization exchange between Cα and Cβ in serine during R3-
PDSD computed with 5 (orange), 6 (magenta), 7 (blue), 8 (green), 9 (red),
and 10 (black) nearest protons in the spin system (for a single crystallite).
Magnetizations are normalized to give a unit signal at t = 0. The initial decay
(a), the initial decay on the logarithmic scale (b), and the long-term behavior
(c) are shown; the dashed black curve in (b) is a straight line shown for visual
enhancement; only 8, 9, and 10-proton systems are shown in (b). The angle
between the C–C axis and the rotor axis is 45◦. The spinning frequency and
the 1H RF field are 10 kHz. The -NH3 group exchange is frozen. The choice
of the nearest protons and other details of the simulations are explained in the
Sec. V.

nounced. The oscillations of the curves are due to large CSAs.
After the chaotic initial phase is over, the small periodic os-
cillations continue (in agreement with Eq. (36)), while the cy-
cle average of the magnetization decays exponentially. Be-
cause the non-stationary phase outcome depends on the angle
γ , the cycle-averaged curves are shifted with respect to each
other for different γ values, even though they have exactly
the same decay rates. The decay constant can be readily esti-
mated by computing the degree of decay at some time t, which
is sufficiently short so that the decay is still exponential but is
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FIG. 2. Magnetization exchange in conventional PDSD. Conditions are the
same as for Fig. 1, except that no 1H-resonant RF field is applied during the
spin diffusion.

sufficiently long so that the transfer during the non-stationary
phase can be neglected compared to the overall decay. The
accuracy of such an estimate turns out to be sufficient for the
simulations of orientational averages. For more precise esti-
mates of the constants, two points on the decay curves must
be computed.

The stationary values around which the magnetizations
oscillate in the long time limit depend not only on the num-
ber of protons in the system as seen in Figs. 1 and 2 but on
other factors as well. In particular, they increase if the C–C
and C–H dipolar couplings are decreased. In some systems,
the exponential character of the decay is difficult to be estab-
lished even for systems with 10 protons. However, the decay
constants can still be accurately computed using the method
described above. Figure 4 illustrates this point. It shows the
magnetization transfer curves computed for a family of sys-

FIG. 3. A detailed view of the magnetization exchange at the beginning of
R3-PDSD. The solid lines show 〈I1z〉 behavior for two different values of the
Euler angle γ ; the α and β angles are the same. The asterisks mark the points
sampled at the end of every revolution of the rotor; the dashed lines connect
these points for visual enhancement. Magnetizations are normalized to give a
unit signal at t = 0. The spin system is a GGV fragment consisting of Gly 1
carbonyl, Val 3 carboxyl, and 8 nearest protons; the dipolar coupling between
the 13C nuclei was scaled by a factor of two. The angle between the C–C axis
and the rotor axis is 45◦. The spinning frequency and the 1H RF field are
10 kHz.

tems where the C–C dipolar coupling has been scaled by fac-
tors ranging from 1 to 1/128, while the rest of the Hamilto-
nian was left unchanged. The system chosen for this exam-
ple is the same as the 10-proton case of Fig. 1. As we know
from theory (Eq. (49)), the decay constant is proportional to
the square of the dipolar coupling between the carbon nuclei.
Fig. 4(b) plots the ratios of the decay constants estimated (as
described above) from the curves in Fig. 4(a) to the decay
constant estimated for the curve with no scaling. One can see
that the decay constants scale exactly as the square of the
scaling factor. The rms of the relative deviations of the es-
timated decay constants from the ideal values determined by
the scaling is 0.3% in this case. This suggests that such initial-
rate estimates of the spin diffusion constants are very accu-
rate even for the exchange curves that do not look exponential
overall.

When we simulated magnetization exchange in similar
systems containing three 13C nuclei, the exchange curves ex-
hibited the expected exponential character, in the sense that

Mz(t) = eWtMz(0), (73)

subject to the same limitations as seen in the two-spin sys-
tems above. The spin diffusion rate constants composing the
rate matrix W were in close agreement with the constants
computed for individual spin pairs in the same system, in
full agreement with the multi-site exchange theory formulated
above. Thus, it appears that the multi-site spin diffusion can
be simulated in two steps. First, one obtains the spin diffusion
rate constants independently for each pair of 13C nuclei as
described above (via full quantum-mechanical dynamics sim-
ulations). Second, one uses these constants to build the spin
diffusion rate matrix, and then simulates the exchange in the
actual experiment via the master equation. We refer to this
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FIG. 4. The effect of scaling of the C–C dipolar coupling on the magneti-
zation exchange between Cα and Cβ in serine during R3-PDSD. Long-term
〈I1z〉 behavior (a) for the dipolar coupling scaling factor s of 1 (black), 1/2
(red), 1/4 (green), 1/8 (blue), 1/16 (magenta), 1/32 (orange), 1/64 (cyan), and
1/128 (brown). Double logarithmic plot (b) of the PDSD decay constants es-
timated from the curves shown in (a); the decay constants are plotted as ratios
to the decay constant for estimated for s = 1. The spin system is the same as
the 10-proton system in Fig. 1; other conditions are the same as in Fig. 1. The
solid line in (b) is the best-fit straight line through the data.

as the “hybrid” method since it combines the reversible and
irreversible dynamic models.

IV. EXPERIMENTAL METHODS

A. NMR samples

Uniformly-[13C,15N]-labeled L-serine was purchased
from Cambridge Isotopes (Andover, MA), diluted to 10%
in the natural abundance serine and crystallized from water.
Selectively labeled Gly-Gly-Val dihydrate (GGV) and Ala-
Gly-Gly monohydrate (AGG) samples (kindly provided by
Marvin Bayro) were prepared by solid-phase synthesis as
described in Ref. 54. The peptides were labeled as [15N]Ala-
[1,2–13C2, 15N]Gly-[1–13C, 15N]Gly and [1–13C, 15N]Gly-
[2–13C, 15N]Gly-[1–13C, 15N]Val. GGV was diluted in the
natural abundance peptide to 8.5%, and AGG to 8%.

B. NMR experiments

NMR spectra were recorded at 11.75 T (125 MHz 13C)
using a 4 mm Chemagnetics probe and custom-designed spec-
trometer and data acquisition and processing software cour-

FIG. 5. The pulse sequence of a 2D R3-PDSD experiment. A CW RF field
with ωRF = ωR is applied at 1H frequency during PDSD.

tesy of Dr. David Ruben. Polycrystalline samples of serine,
GGV, and AGG were packed in the center third of the ro-
tor to reduce the inhomogeneity of the RF field to ∼5%. The
sample spinning frequency was controlled by a Bruker con-
troller and was stable to within a 1–3 Hz. A recycle delay of
3 s was used in all cases. The pulse sequence of the 2D R3-
PDSD experiment is shown in Fig. 5. TPPM decoupling with
the field of ∼105 kHz was used during the t1 and t2 evolution
periods and was optimized to yield the narrowest lines, which
included optimization of the 1H RF frequency. The same 1H
RF frequency was used during the PDSD period. Ramped CP
was optimized for overall signal amplitude. The indirect di-
mension was sampled with the rate of one point per four rotor
periods and the dimension size of 64 points. Axial peak sup-
pression was achieved by cycling the phase of the CP lock (as
0˚ and 180˚) on top of the standard 8-step solid-state phase
cycle consisting of CYCLOPS and the CP temperature sign
cycles. Hypercomplex method55 was used for frequency dis-
crimination in the indirect dimension. The three diagonal and
six cross peaks were integrated for each sample by summing
the amplitudes of all points within the peak area using MAT-
LAB.

C. X-ray crystallography

The structures of GGV and AGG were determined by
Dr. Peter Müller at the MIT Department of Chemistry X-Ray
Diffraction Facility. The peptides (purchased from Bachem)
were crystallized from water at room temperature by slow
evaporation. Low temperature diffraction data were collected
on a Siemens Platform three-circle diffractometer coupled
to a Bruker-AXS Smart Apex CCD detector with graphite-
monochromated Mo Kα radiation (λ = 0.71073 Å), per-
forming ϕ- and ω-scans. The diffractometer was equipped
with a Cryo Stream 700 by Oxford Cryosystems, and a
complete data set to a very high MoO was collected at
100 K. The structure was solved by direct methods using
SHELXS56 and refined against F2 on all data by full-matrix
least squares with SHELXL-97. All X–H bond distances in the
refined structure were set to the standard target values. Result-
ing crystal structures are available as structure 06183/himp
(AGG) and structure 06126/himp (GGV) on Reciprocal Net
(http://reciprocal.mit.edu/recipnet/index.jsp).

V. SIMULATION METHODS

The data obtained in the R3-PDSD experiments described
above were simulated in two stages. In the first stage, we
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computed the spin diffusion rate constants for all relevant 13C
spin pairs in serine, AGG, and GGV for 100 orientations of
the crystallite in the MAS rotor. The orientations were defined
through the (α, β) Euler angle pairs of the REPULSION-10057

set for spherical integration. The third angle, γ , which defines
rotation around the rotor axis, does not require averaging (cf.
Fig. 3). In the second stage, the constants were used to set up
the spin diffusion rate matrix W for each crystal orientation,
which was then used to compute the spin diffusion (followed
by the averaging over the orientations). The details of these
simulations are explained in the rest of the section. The spin
systems and corresponding spin diffusion rate matrices for
Eq. (78) were generated in MATLAB. All other computations
were performed using SPINEVOLUTION37 in single precision
arithmetic. The typical input files for the simulations will be
included in the set of examples distributed with the program
in its future releases.

A. Computation of the spin diffusion rate constants

Two independent methods were used to compute the
spin diffusion constants: direct and through the zero-quantum
lineshape. In the direct method, the equation of motion for
the time evolution operator was numerically integrated with
the Hamiltonian given by Eq. (2) over one rotor cycle. The
parameters of the Hamiltonian were chosen as explained
below. The integration was performed by the exponentiation
of the Hamiltonian via the Chebyshev expansion, in steps
of 3 μs. The resulting propagator was used to propagate the
density matrix for 16 rotor cycles if the 13C pair was directly
bonded, and for 64 rotor cycles in all other pairs. The initial
state was I1z, while I2z was the observable. The spin diffusion
constant for the given crystal orientation was computed as

wij = − ln(1 − 2s)

2t
, (74)

where t is the evolution time equal to 16τR or 64τR and the
signal s is defined as in Eq. (56).

In the spectral densities method, we used the expression
for the decay constant given by Eq. (50). The spectral densi-
ties were computed through the numerical simulation of the
zero-quantum coherence decay with the help of a modified
g-COMPUTE algorithm.58 The same Hamiltonian was used as
with the direct method, except for the C–C dipolar coupling
and the 13C isotropic chemical shifts, which were taken into
account explicitly through Eq. (50). The integration of the
equation of motion for the propagator was performed by the
exponentiation of the Hamiltonian via the Chebyshev expan-
sion, in steps of 3 μs. The initial density matrix was I+

1 I−
2 ,

and the observable was I−
1 I+

2 . The signal was acquired with
216 points sampled every 5 μs. Gaussian apodization with
500 Hz line broadening was applied to the signal before FFT.

To evaluate the agreement between two sets of spin diffu-
sion constants computed with two different methods (or vari-
ations of the same method), we used the relative discrepancy,
defined as

εAB
ij = (wA

ij − wB
ij )

wA
ij

, (75)

and characterized by its mean and standard deviation over the
set of orientations for which the constants were computed. If
one of the methods is known to produce accurate results, then
these parameters measure the error in the constants produced
with the other method. Note that the sign and the magnitude
of the mean εAB

ij quantify the degree to which the methods
overestimate or underestimate the constants for the given pair
of spins.

B. Simulation of the experimental data

Assuming that the exchange is strictly intramolecular,
and only labeled sites are involved, the experimental peak
intensities S(t) are related to the powder averaged magneti-
zation exchange curves s̄(t) computed from Eq. (72) by the
following equation:

Sij (t) = fiqj (s̄ij (t) + δij xNA exp(−Rit)). (76)

Here, Sij (t) is the integral intensity of the peak appearing at
the frequency of spin i in the indirect dimension, and spin
j in the direct dimension, after a spin diffusion period of
duration t. xNA exp(−Rit) are the contributions to the di-
agonal peak intensities arising from the natural abundance
material. The factors fi and qj account for the overall nor-
malization of the signal, the small differences in the initial
polarizations of the 13C spins resulting from non-uniform
cross-polarization, the signal lost in the sidebands, and the
variations in the peak lineshapes. The relaxation rates and the
scaling factors are unknown and hence were obtained by fit-
ting Eq. (76) to the experimental data. As only five of the
scaling factors are independent, q1 = 1 was used as a fixed
value. In the case of serine, all relaxation rates were assumed
to be zero, as relaxation is too slow on the time scale of the
spin diffusion in this system.

Equation (76) is an idealization, as it does not account for
the exchange of magnetization with the neighboring labeled
molecules, as well as with the natural abundance 13C nuclei.
These effects are particularly large in the AGG and GGV
samples due to the relatively long distances over which the
intramolecular exchange is occurring in these samples, with
the longest distance of ∼4.9 Å in either case. For example,
on average, for one labeled GGV molecule, within 7 Å of its
labeled nuclei, there are 1.3 intermolecular contacts to other
labeled molecules, and 1.1 contacts to the natural abundance
13C nuclei. This means that most of the labeled molecules in
the crystal are coupled to each other, forming a random net-
work that spreads throughout the entire crystal. The only way
to account for these contacts is through the explicit simulation
of spin diffusion in small crystallites set up to imitate the dis-
tribution of the labeled molecules and natural abundance nu-
clei in the actual sample. The following procedure was used
to accomplish this.

The crystallite sizes of 7 × 7 × 7 unit cells were used
for serine and GGV, and 9 × 9 × 9 unit cells for AGG. The
spin systems formed by the 13C nuclei appearing in such crys-
tallites contained from 230 to 450 spins. Crystallites with
smaller dimensions yielded unacceptably large fluctuations
in the results. The surface effects were eliminated through
the use of the periodic boundary conditions, i.e., the spin
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diffusion rate matrix W for the crystallite was computed as-
suming that the spin system was periodically replicated along
all three crystallographic axes. As the model allows a choice
of the purity of the 13C labeling, we used the 99% purity
for each labeled site in all three compounds. The labeled
molecules, the 12C impurities in them, and the natural abun-
dance 13C nuclei in the crystallite were randomly chosen for
each orientation used for the orientational averaging. To sim-
plify the computation of the spin diffusion rate matrices for
systems of this size, the intermolecular spin diffusion con-
stants were not computed directly but rather estimated from
the corresponding intramolecular constants by appropriately
scaling them:

wij = wIJ r6
IJ

r6
ij

, (77)

where (I, J) is the intramolecular spin pair corresponding to
the intermolecular pair (i, j). Since the orientation of the pair
(i, j) may be arbitrary, while the orientation of the pair (I, J)
is fixed for a given crystallite, this approximation would be
unacceptable for the computation of individual spin diffusion
constants. However, for the simulation of the orientationally
averaged magnetization exchange, the method appeared to
yield accurate results. The experimental peak intensities were
computed as follows:

Sij (t) = N−1fiqjP
T
i exp(W − R)tPj , (78)

where the bar symbolizes orientational averaging, N is the av-
erage number of labeled molecules in the crystallite, and Pi

is the vector of zeros and ones, with the ones appearing at the
spins located at the site i. Note that if the intermolecular ex-
change is neglected, Eq. (78) becomes equivalent to Eq. (76).

C. Parameters of the Hamiltonian

The dipolar coupling parameters were computed from
the atomic coordinates of the nuclei. The coordinates were
taken from the x-ray crystallographic structures obtained as
described above for GGV and AGG, and from Ref. 59 for ser-
ine (each of the structures has one molecule per asymmetric
unit). Unless otherwise specified, the spin system was com-
posed of two 13C nuclei and 10 nearest protons from their
local environment. The protons were chosen as follows. First,
a single molecule was selected in the crystal structure, and
the list of all protons within 4.5 Å of the carbon nuclei in
this molecule was compiled (the local environment). Then,
for each carbon pair of interest, 10 protons were chosen from
this list that had the largest values of 1/r3

1 + 1/r3
2 , where r1

and r2 are the distances to the first and the second carbon nu-
cleus in the pair.

The dipolar coupling for directly bonded 13C–13C and
13C–1H pairs was corrected to account for the vibrational
averaging60 and for the intrinsic inability of the x-ray crys-
tallography to accurately determine bond lengths to proton
nuclei.61 The effective directly bonded C–H distances were
set to 1.12 Å (chosen as a consensus value from Refs. 62–65).
The directly bonded C–C distances were effectively increased
by 0.025 Å, which corresponds to the difference in the effec-

tive distance of 1.55 Å measured in Ref. 66 for glycine and
the distance of 1.525 Å observed in its structure obtained by
diffraction methods.

The 13C CSA values and orientations were taken or es-
timated from a number of sources.54, 67–74 The 13C isotropic
chemical shift values used were taken from the experiment.
The 1H chemical shift and CSA values were neglected in
most of the computations presented in this work. The no-
table exception is the computation of the spectral densities
for Figs. 9–11: the zero-quantum coherence does not decay
completely if the 1H CSA and chemical shifts are neglected
at high spinning frequencies and 1H RF fields away from
the rotary resonance. For these computations, and in order
to investigate the significance of the 1H CSA/CS effects in
other situations, the necessary values were estimated from
Ref. 75.

All –NH3 groups, methyl groups, and water molecules
were assumed to undergo fast regime three-76–78 and
twofold79 hopping, respectively, resulting in the appropriate
averaging of the related CSA and dipolar coupling tensors. If
not all protons of the group participating in the exchange were
included in the spin system, the exchange had to be neglected.
When computing the spin diffusion constants for the directly
bonded CO–CA pair in AGG, all three protons of a nearby
–CH3 group were included in the spin system to account for
the fast hopping, even though only two of them were among
the 10 closest protons.

The isotropic J-couplings for the directly bonded C–C
pairs were assumed to be 35 Hz.

VI. RESULTS AND DISCUSSION

A. R3-PDSD in serine and peptides

As explained in Sec. V, the experimental data obtained
for R3-PDSD in serine, AGG, and GGV samples were sim-
ulated using two different methods for the computation of
the spin diffusion constants. Both approaches yeilded very
similar results, although the constants obtained with the spec-
tral densities method were slightly larger on average. The typ-
ical relative discrepancy between the methods (as defined by
Eq. (75)) had a mean of about 0.5%. The directly bonded
pairs and the CO–CO pair in AGG were exceptions, exhibit-
ing much larger deviations, with the extreme of 3.8% in the
case of CO–CA in serine. The only pair for which the spectral
densities method yielded systematically smaller constants (by
1.6%) was CA–CB in serine. The standard deviation of the
discrepancy between the two methods was typically around
1%, with the exception of CO–CA in serine, where it was
3.8%. As discussed below, the larger discrepancies observed
for the directly bonded pairs is a consequence of the exchange
being too fast in these cases, which leads to deviations from
the exponential behavior.

The residual sums of squares (RSS’s) obtained in fit-
ting Eq. (78) to the experimental data in serine were 15%
larger using the constants computed with the spectral den-
sities method than with the direct method. In peptides, the
RSS’s were nearly the same for the two methods. The dif-
ference observed in serine is expected, given the systematic
bias in the CO–CA constants mentioned above. The data and
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FIG. 6. Intensities of the diagonal and cross peaks in 2D 13C MAS correlation experiments using R3-PDSD for mixing in U-[13C, 15N]-L-serine (a-c). The
spinning frequency and the 1H RF field are 10 kHz. The sample was diluted to 10% by the natural abundance compound. The asterisks represent the data; the
solid lines represent the simulations. The 13C–labeled sites are enclosed in colored boxes in (d); the color used for each peak corresponds to the color of the 13C
site in the direct dimension for the peak.

the results of the simulations are presented in Figs. 6–8. The
magnetization exchange curves obtained with the two meth-
ods were virtually indistinguishable visually, and we chose to
display only one set of curves for each molecule.

The residual errors observed in the data fits can be sep-
arated into two main components: one randomly fluctuating
from point to point, and the other slowly drifting along the
data curves. The first component can be attributed to the

FIG. 7. Intensities of the diagonal and cross peaks in 2D 13C MAS correlation experiments using R3-PDSD for mixing in a specifically 13C–labeled AGG: the
initial evolution up to 13 ms (a,c,e) and the full curves (b,d,f). The spinning frequency and the 1H RF field are 10 kHz. The sample was diluted to 8% by the
natural abundance compound. The asterisks represent the data; the solid lines represent the simulations. The 13C–labeled sites are enclosed in colored boxes in
(g); the color used for each peak corresponds to the color of the 13C site in the direct dimension for the peak.
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FIG. 8. Intensities of the diagonal and cross peaks in 2D 13C MAS correlation experiments using R3-PDSD for mixing in a specifically 13C–labeled GGV
(a-c). The spinning frequency and the 1H RF field are 10 kHz. The sample was diluted to 8.5% by the natural abundance compound. The asterisks represent the
data; the solid lines represent the simulations. The 13C–labeled sites are enclosed in colored boxes in (d); the color used for each peak corresponds to the color
of the 13C site in the direct dimension for the peak.

random experimental error, while the second – to the error
of the model. Such separation can be achieved, for exam-
ple, by fitting the data to a multi-exponential model of the
form

ŝ(t) =
∑

i

αie
(Wi−Ri )t , (79)

using ŝ(t) instead of s̄(t) in Eq (76), and treating αi , Wi ,
Ri , and the scaling factors as the fit parameters. One may
assume that for PDSD data, such fits will be able to repro-
duce all slow changes along the data curves, while leaving
the random errors as residuals. We computed these fits us-
ing one, two, and three exponentials in Eq. (79). For all three
data sets, the residual errors obtained in the three-exponential
fits did not exhibit any drifts along the exchange curves and
had zero means, thus, appearing completely random. Further-
more, the residual sums of squares obtained using two- and
three-exponential fits were relatively similar (thus indicating
convergence) in the cases of serine and AGG. Hence, we used
the three-exponential RSS’s to estimate the rms of the ran-
dom data error. The differences between these RSS’s and the
RSS’s obtained in fitting the data to the spin diffusion sim-
ulations were attributed to the errors of the model. The esti-
mates obtained in this fashion are summarized in Table I. To
validate this treatment, we verified that addition of synthetic
random noise to the data did not lead to substantial changes
in the model error, while causing expected (additive) changes
in the random error. The data errors reported in Table I ex-
hibit tendency expected from the signal-to-noise ratio for the
samples. Possible sources of the model error are discussed in
Sec. VI B.

The RSS of the single-exponential fit to the serine data
was 6.3 times larger than the three-exponential fit. When
compared with the errors reported for serine in Table I, this
clearly demonstrates the non-exponential character of the ori-
entationally averaged magnetization exchange. Characteriz-

ing these experimental exchange curves by a single spin dif-
fusion rate matrix, as it has been universally done previously,
may lead to large model error.

The relatively small data and model error seen in Table I
support the theoretical and computational models proposed
in this work and suggest that accurate model parameters may
be extracted from the PDSD data. The internuclear distances
are, perhaps, the most interesting parameters for the applica-
tions. When all other model parameters are known, fitting the
distances is straightforward, since the spin diffusion constants
scale as r−6

ij and thus do not need to be recomputed from
scratch for a different set of distances. The random error of
such estimates will be proportional to the rms data error, but
it will also depend on the specific spin system and the specific
set of distances being extracted. The systematic biases in
these estimates will be related to the model error and will also
depend on the specifics of the system. Three-spin systems
will typically be rather unfavorable for accurate determina-
tion of their geometry. As an example, in serine, the CO–CB
spin diffusion constants are smaller than the constants for the
directly bonded pairs by a factor of 20. As a consequence,
most of the transfer between CO and CB will be relayed
through the CA nucleus, and the data will be relatively insen-
sitive to the CO–CB distance. In AGG, on the other hand, the
spin diffusion constant for the directly bonded pair is about
400-fold lager than the other two. As a result, the two directly

TABLE I. The rms error per point estimated for the data and simulations
shown in Figs. 6–8.

Serine AGG GGV

σD, %a 0.54 0.79 1.02
σM, %a 0.40 0.39 0.73

aσD is the data error, σM is the model error; measured as a fraction of the initial signal,
i.e., of a diagonal peak intensity at tmix = 0.
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TABLE II. The internuclear distances obtained by fitting the data.

Serine AGG GGV

rij
a r0

b r̂/r0 CI,c% r0
b r̂/r0 CI,c% r0

b r̂/r0 CI,c%

r12 1.552 0.9976 ±0.22 3.712 1.011 ±0.46 4.91 1.0058 ±2.3
r13 2.526 0.9952d ±1.5 4.873 1.021 ±1.1 4.53 0.9986 ±0.68
r23 1.535 0.9978 ±0.23 1.555 0.994 ±0.29 2.41 0.9959 ±0.61

aThe 13C nuclei are numbered as follows: CO (1), CA (2), CB (3) in serine; Gly-3 CO
(1), Gly-2 CO (2), Gly-2 CA (3) in AGG; Val-3 CO (1), Gly-1 CO (2), Gly-2 CA (3) in
GGV.
bThe effective internuclear distance computed from the x-ray crystal structures and cor-
rected for the vibrational averaging for directly bonded pairs (by +0.025 Å (Ref. 66)).
cThe 95% confidence intervals estimated assuming identically and independently dis-
tributed Gaussian errors.
dComputed using r12/r12(0) = r23/r23(0) = 0.9978.

bonded nuclei will behave essentially as one on the time
scale of the exchange with the remote nucleus, and the data
will be insensitive to the individual values of the two weaker
constants, depending mostly on their sum. Fortunately, in
uniformly labeled proteins or other large molecules, such
ambiguities in individual internuclear distances will typically
be compensated by the purely geometric constraints.

Without such constraints, simultaneous fitting of all dis-
tances is likely to produce large errors due to the effects men-
tioned above. With the three-spin systems used in the present
work, fitting the distances one at a time, while using the
known values for the other two, is the best one can do to
characterize the potential of the method, even though the
intention is to fit all the distances simultaneously in the ap-
plications. Table II summarizes the results of such data fits
computed using Eq. (78). As one can see, most of the dis-
tance estimates are both very accurate and precise. The rela-
tively large errors in the CO–CB distance in serine and the two
longer distances in AGG are in agreement with our remarks
above. The large error bar on the CO–CO distance in GGV is
due to a similar effect. The impact of the lack of constraints
in AGG on the distance estimates can be illustrated by opti-
mizing r13 while having the value of r12/r12(0) fixed at 1.01.
This results in r̂13 value being off by only 0.06%, in contrast
to the 2.1% error reported in Table II, which was obtained for
r12/r12(0) = 1. As mentioned above, we expect that in larger
systems such uncertainties in the distance estimates will be
much less problematic since one will fit the internal molecu-
lar coordinates rather than distances in these situations. Fur-
thermore, this issue can be significantly alleviated through the
use of two or more PDSD data sets for the same molecule (ob-
tained with different 1H RF fields and spinning frequencies),
especially if they are designed to provide complementary in-
formation.

B. Factors affecting the accuracy

The coupling of 13C nuclei to the directly bonded
protons (or equivalent effective distance) is the primary
factor determining the shape of the spectral density functions,
and thus will strongly affect the spin diffusion constants.
However, due the vibrational averaging effect,60 it cannot
be determined directly by the diffraction methods, and there

is a considerable disagreement in the literature regarding its
exact value.62–65, 80 In the present work, we used the effective
C–H distance of 1.12 Å to compute these couplings in all
CH and CH2 groups, but it is likely that using different (and
more accurate) values for different groups could improve
the accuracy of the simulations in the future. Independent
PDSD experiments can be readily designed to measure these
couplings very accurately. For example, from the dependence
of the serine CO–CA spin diffusion constants on the effective
C–H distance in the CA group, we estimate that the 1.12 Å
value should be accurate to within ±0.007 Å for this group.

The vibrational averaging of the directly bonded C–C
dipolar couplings is just as important. Accurately measured
by the diffraction methods, the distances between directly
bonded sp3 hybridized carbons exhibit a significant variation
in various compounds. In order to account for vibrational av-
eraging, we used a uniform correction of +0.025 Å for these
experimental values, which follows from the effective C–C
distance in glycine66 and the assumption that this correction
is approximately the same for all C–C pairs in question. For
future work, this correction can be determined even more ac-
curately from our serine data. Indeed, in contrast to the CO–
CA spin diffusion constants, the CA–CB constants in serine
are unaffected by small variations in the effective C–H dis-
tance and thus are independent on our assumptions regarding
the value of this parameter. Since all other parameters of the
serine model are relatively reliable, the estimate for the effec-
tive CA–CB distance in serine of 1.532 ± 0.0035 Å given in
Table II appears to be the most accurate estimate of a dipolar
coupling in a directly bonded C–C pair available to date. Us-
ing this estimate, and taking 1.514 ± 0.002 Å as the CA–CB
distance given by the diffraction methods,81 we can estimate
that the vibrational averaging correction should be +0.018
± 0.004 Å (at room temperature).

The CSA values and orientations may introduce consid-
erable amount of uncertainty in the results of the simula-
tions. For the peptides used in this work, most of these pa-
rameters were estimated from the known values in similar
compounds, while the tensor orientations assumed for the Cα

nuclei were essentially arbitrary. Nevertheless, this should not
present a fundamental problem when simulating PDSD in
proteins, since in that case the 13C CSA parameters are ac-
cessible through ab initio calculations,82 or can be estimated
from the isotropic chemical shift values.83

The exchange of the protons in the nearby –NH3 and
–CH3 groups should also be taken into account in the simula-
tions. Freezing this exchange in the serine, for example, leads
to noticeable overestimation of the constants, with the largest
relative errors observed for the CO–CA pair (2% mean and
9% standard deviation).

The limited number of protons that can be included in
the simulations is also a potential source of error in the com-
puted constants. Nevertheless, in most cases we observed in
the simulations, the values computed for the spin diffusion
constants essentially converged by the tenth proton added to
the system and exhibited little dependence on the exact set of
protons included, as soon as the most proximate protons were
in the set. The relative discrepancies observed in such simula-
tions typically had standard deviations on the order of 1%, but
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their means were much smaller. Including only eight protons
tended to result in lower accuracy.

The 13C longitudinal relaxation rates were assumed
isotropic in this work and were treated as fit parameters as
explained above. The values obtained in the fits ranged from
0.02 to 0.06 s−1. Two exceptional values were obtained in
AGG, one of which was nearly zero and the other negative.
These unphysical values were possibly compensating for a
systematic error in the data and were allowed by the insuf-
ficiently long time during which the exchange was observed
in this sytem. The assumption of the longitudinal relaxation
being isotropic is clearly a rough approximation. While it
was acceptable for fitting the AGG data, its contribution to
the much larger model error in the case of GGV may be sig-
nificant. The dynamic exchange of protons in the –NH3 and
–CH3 groups and water molecules constitutes a major source
of the 13C longitudinal relaxation in biomolecules, which is
not difficult to compute theoretically. Such computations can
be used in the future to estimate the anisotropic parts of the
relaxation rates. We expect that this will be particularly im-
portant if the 13C nuclei of the –CH3 groups participate in the
spin diffusion, as the longitudinal relaxation on these nuclei is
very fast and they will act as maznetization sinks in the course
of the exchange.

As observed for the CO–CA pair in serine, the deviations
from the exponential character of the exchange dynamics can
become significant due to the exchange being too fast to ne-
glect on the timescale of the correlation time τc. In such cases,
prior to reaching a stationary value, the spin diffusion con-
stant is time-dependent during an initial period of duration τc

(see Fig. 3). The direct method gives better data fits as it com-
putes an average value, while the spectral densities method
produces the extreme stationary value. For higher accuracy
of the simulations, one may possibly use time-dependent spin
diffusion constants obtained with the direct method, or rely
on the non-Markovian equation (34) to compute the exchange
curves.

As explained in Sec. V, accounting for the intermolecu-
lar magnetization exchange, as well as for the exchange with
natural abundance 13C nuclei is essential for accurate sim-
ulation of the data. Neglecting these effects, for example,
in GGV, leads to the estimate of the CO–CO distance that
is off by about 10% from the correct value, in contrast to
only 0.6% error seen in Table II. The procedure we used to
compute the spin diffusion rate matrix for Eq. (78) is some-
what crude and may also serve as a potential source of error
(the intermolecular spin diffusion constants were estimated
from the intramolecular constants). In addition, while for ser-
ine we used individually computed spin diffusion constants
for all four molecules in the primitive unit cell, for AGG
and GGV, we used only one set of constants, even though
these compounds have two molecules per primitive unit
cell.

The powder averaging scheme (REPULSION-10057) and
the integration step (3 μs) we chose for this work may also
have compromised the accuracy of some of our computations.
This choice was made at the early stages of the work and
was influenced by the lack of the available computational re-
sources at the time. For the future applications, hemispherical

nodal sets appear to be more efficient than spherical sets for
orientational averaging, but we have not explored this issue in
detail.

The effects of the 1H chemical shifts and CSAs on the
spin diffusion constants in our model compounds were quite
small. The discrepancies between the sets of constants com-
puted with and without these terms in the Hamiltonian were
typically well under 1% in mean and under 3% in the stan-
dard deviation. Thus, they are unlikely to be significant for
practical purposes, and we chose to neglect them altogether.

C. PDSD via spectral densities

In the expression for the PDSD constant, Eq. (49), the
effects of the C–C dipolar coupling and of the 13C isotropic
chemical shifts and CSA tensors are described analytically.
The effects of all other parameters of the Hamiltonian,
namely, the C–H and H–H dipolar coupling terms, the RF
field, and the spinning frequency, are accounted for through
the spectral density function, which is computed numerically
as the zero-quantum coherence decay lineshape. Note that we
define the zero-quantum lineshape as purely dipolar in the
sense that it does not contain the effects of the 13C chemical
shift (although it does contain the effects of the 1H chemical
shift, if present). This is different from the use of the term by
most other authors who follow Kubo and McDowell.36 Our
definition is preferred because it results in very similar line-
shapes for the pairs of spins of the same type (e.g., CO–CH).

Owing to the sample rotation, the spectral density is ex-
pressed as a set of Fourier components Jk(ω). In general, all
of these components must be taken into account in the com-
putations. However, for qualitative insights, it is often suffi-
cient to consider only the k = 0 component. It is typically the
largest in magnitude, and its integral is equal to one, as fol-
lows from the normalization of G(t ; τ ). Due to the symmetry
expressed by Eq. (55), the real part of J0(ω) is approximately
even, while the imaginary part is approximately odd. The
specific shape of the spectral density depends on the
combination of the three main factors: the spin system, the
1H RF field, and the spinning frequency. In Fig. 9, we show
the orientationally averaged J0(ω) for three kinds of 13C pairs:
CO–CO, CO–CH2, and CH2–CH, computed for the spinning
frequencies of 10 and 50 kHz and various 1H RF field ampli-
tudes (using a CW field). One can see that the rotary-resonant
RF fields (with ωRF = ωR) result in spectral densities charac-
terized by a single central peak with a width given (qualita-
tively) by the overall strength of the C–H dipolar couplings
in the system. Other conditions result in the spectral densi-
ties containing bands at nωR and nωR ± ωRF (for high spin-
ning frequencies), or exhibiting more complex band patterns.
Although it is generally assumed that the zero-quantum line-
shapes are Lorentzian (e.g., when accounting for relaxation
in rotational resonance experiments), the simulations show
that this is probably never the case. For example, the bell-
shaped lines corresponding to rotary-resonant conditions in
Figs. 9(a) and 9(b) and E are actually much closer to Gaussian
than to Lorentzian. Furthermore, under the conditions typical
for high-power CW decoupling, the CO–CO zero-quantum
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FIG. 9. Orientationally averaged real components of the spectral densities J0(ω) for representative 13C pairs in GGV: {Gly1–CO, Val3–CO} (a and b), {Gly1–
CO, Gly2-CA} (c and d), {Gly2-CA, Val3-CA} (e and f) computed for spinning frequencies of 10 kHz (a,c,e) and 50 kHz (b,d,f). At the spinning frequency of
10 kHz, the 1H RF field amplitudes are 0 (black), 5 (red), and 10 (blue) kHz. At the spinning frequency of 50 kHz, the 1H-resonant RF field amplitudes are 0
(black), 10 (red), and 50 (blue) kHz.

lineshape approaches a nearly ideal Gaussian. The sidebands
appearing at nωR ± ωRF (Figs. 9(b), 9(d), and 9(f)) corre-
spond to the MIRROR recoupling conditions,29 which sug-
gests that the magnetization exchange observed under these
conditions is a special case of PDSD and, thus, can be
naturally explained and quantitatively simulated using the
methodology developed in the present work.

Various qualitative insights can be drawn from these fig-
ures in conjunction with Eq. (49). As an example, one can
observe that the CO–CO spectral densities consist of single
narrow peak, except for the no-RF case, which exhibits small
sidebands at ω = ±ωR . Considering that the isotropic chem-
ical shift difference in CO–CO pairs is very small, this re-
stricts the summation indices in Eq. (49) to n = 0. In addi-
tion, considering that J0(ω) is at least two orders of magnitude

larger than the other components of the spectral densities for
CO–CO pairs (because the proton environment in such pairs
is fairly isotropic), one obtains another selection rule, k = 0.
With these selection rules, Eq. (49) is transformed to

kCO−CO
D = 1

6

∣∣∣∣∣
2∑

k=−2

D
(−k)
2,0 C(k)

∣∣∣∣∣
2

ReJ0
(
ωiso

�

)
. (80)

Since D
(0)
2,0 = 0, the spin diffusion constant for a CO–CO pair

is determined by the intensities of the k = ±1,±2 sidebands
of the CSA difference for the nuclei. This implies, for ex-
ample, that in α-helices and β-sheets in proteins, the PDSD
constants for many carbonyl pairs will be heavily attenuated
due to the relative similarity of their CSA tensors resulting
from the high degree of alignment of the CO groups. This also
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implies that the accuracy of the computed spin diffusion con-
stants for CO–CO pairs will depend greatly on the accuracy
of the CSA parameters used to compute them.

For 13C pairs characterized by similar isotropic chemical
shifts and small CSAs, such as CA–CA pairs, the main contri-
bution to the spin diffusion constant will come from the spec-
tral density values around ω = ±ωR,±2ωR , entailing that the
no-RF PDSD transfer will be more efficient than R3-PDSD
since no-RF spectral densities are distributed mostly at the
sidebands. In general, it is clear that various combinations of
spinning frequencies and 1H RF fields can be used to design
PDSD experiments capable of providing complimentary sets
of structural constraints when applied to the same molecule
of interest, such as a protein, with the potential of resulting in
highly accurate structures.

D. Diffusion in the non-Markovian regime

At high spinning frequencies (Fig. 9) or high 1H RF
field amplitudes (e.g., during proton decoupling), the spec-
tral density collapses to a narrow peak at ω = 0, possibly
accompanied by a few small sidebands (unless the 1H RF
field amplitude matches a rotary resonance condition). This
implies comparatively long decay times for the correlation
function and may lead to the breakdown of the conditions
required for the spin diffusion dynamics to be Markovian.
As can be seen from the expression for the spin diffusion
constant (Eq. (49)), this breakdown becomes most apparent
when ωiso

� = nωR , where n = ±1,±2 for small CSAs, or n

= 0,±1,±2, . . . for large CSAs. The exchange of mag-
netization under these conditions is commonly known
as rotational resonance (R2).52, 53, 84 In an isolated two
-spin system, this exchange can be represented as precession
of the density matrix about the effective Hamiltonian in
the (23) spin subspace46, 85 (Eqs. (8)–(10)). However, under
typical experimental conditions, this picture is often a poor
approximation, as the interactions with protons are rarely
negligible even at very high 1H decoupling fields. It has
been assumed46, 86 that the effects of these interactions can
be described by the zero-quantum relaxation coefficients
phenomenologically introduced into the equation of motion
of the density matrix for the isolated two-spin system.
This assumption postulates a Lorentzian lineshape for the
zero-quantum coherence decay (as it operates with the
zero-quantum relaxation times T

ZQ
2 ). As we have seen

above, these lineshapes are never Lorentzian. Therefore, it
should be expected that the standard treatment of rotational
resonance is likely to carry a significant model error that has
not been previously recognized. The PDSD theory presented
above contains rotational resonance as a special, although
extreme case, and may constitute a more accurate alternative
to the standard semi-phenomenological treatment of R2. An
exploration of this possibility, as well as a test of the validity
of the non-Markovian equation (34) is presented below.

If the zero-quantum coherence decay is fast relative to
the C–C dipolar coupling strength, R2 exchange proceeds in
the Markovian regime, i.e., as an exponential decay with the
constant given by Eq. (49). For the hypothetical case of a
Lorentzian zero-quantum lineshape, the expression for the de-

cay constant agrees with the result obtained in Eq. (81).46 In-
deed, at the exact resonance (ωiso

� = nωR with n = 1 , 2), as-
suming that J0(ω) is Lorentzian and neglecting all other Jk(ω)
components and the non-resonant terms, Eq. (49) is trans-
formed to

kD = ∣∣ω(n)
D

∣∣2
T

ZQ
2 , (81)

which is identical to the expression given in Ref. 46. However,
in real systems, Eq. (49) should be generally more accurate
than Eq. (81) for the reasons explained above.

In the general case, R2 exchange should obey the non-
Markovian equation (34), which can be solved under assump-
tions that are significantly milder than the Markovian limit. To
arrive at this solution, we first write Eq. (34) in terms of the
Fourier components of the correlation function. These com-
ponents are made obvious by writing the correlation function
(Eq. (47)) as follows:

�(t ; τ ) =
∑
m

eimωRt�m(τ ) + c.c.

=
∑
m

eimωRt (�m(τ ) + �∗
−m(τ )), (82)

where

�m(τ )= 1

2

∑
k,n

ω
(n)
D ω

(n+k−m)∗
D e−i(ωiso

� −nωR+mωR)τGk(τ ). (83)

With this expansion, Eq. (34) becomes

d

dt
s(t) = −

∑
m

eimωRt

∫ t

0
(�m(τ ) + �∗

−m(τ )) s(t − τ ) dτ .

(84)

The integrals on the right-hand side of Eq. (84) are now con-
volutions, and this equation can be readily transformed to the
frequency domain using the convolution theorem. Applying
the Fourier transform to both sides of Eq. (84) results in

iωS(ω) − 1 = −
∑
m

k
(m)
D (ω)S(ω − mωR), (85)

where

k
(m)
D (ω) = K (m)(ω) + K (−m)∗(−ω), (86a)

K (m)(ω) = 1

2

∑
k,n

ω
(n)
D ω

(n+k−m)∗
D Jk

(
ω + ωiso

� − nωR

)
. (86b)

Equation (85) can be “resolved” with respect to S(ω) as
follows:

S(ω) = 1 − ∑
m�=0 k

(m)
D (ω)S(ω − mωR)

k
(0)
D (ω) + iω

. (87)

For a wide range of conditions, the solution to this equation
can be approximated as

S(ω) = 1

k
(0)
D (ω) + iω

, (88)

while the effects of the terms neglected on the right-hand side
of Eq. (87) will be mostly in the sidebands in S(ω). This is
most easily seen in the Markovian regime (cf. Eq. (36)). The
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accuracy of the solution given by Eq. (88) can be evaluated by
substituting it back to Eq. (87), and more accurate solutions
can then be found by iteration. If one is not interested in the
small oscillations of s(t) within a rotor cycle (e.g., as seen in
Fig. 3), Eq. (88) becomes an acceptable approximate solution.

Equation (88) implies that S(ω) is Lorentzian if it is suffi-
ciently narrow, i.e., if the decay of s(t) is relatively slow. More
precisely, this occurs when k

(0)
D (ω) is approximately constant

in the vicinity of ω = 0 for a frequency range much larger
than its magnitude. The expression for the decay constant cor-
responding to this Lorentzian is exactly the same as given by
Eq. (49), i.e., kD = k

(0)
D (0), but now we obtained it under less

stringent conditions, which are also more readily accessible
for direct verification.

Just as in the Markovian regime, for the hypothetical
case of the Lorentzian zero-quantum lineshape, Eq. (88)
gives the same expression for s(t) as obtained in the semi-
phenomenological R2 treatment.46 By making the same as-
sumptions as were used to obtain Eq. (81) from Eq. (49),
k

(0)
D (ω) is transformed to

k
(0)
D (ω) = ∣∣ω(n)

D

∣∣2 1

α + iω
, (89)

where α−1 = T
ZQ

2 . The inverse Fourier transform of Eq. (88)
using this expression for k

(0)
D (ω) yields

s(t) = e− 1
2 αt

(
cos �t + α

2�
sin �t

)
, (90)

where

�2 = 1

6

∣∣ω(n)
D

∣∣2 − 1

4
α2. (91)

Interestingly, the R2 exchange in a system consisting of only
two 13C nuclei (in the absence of any protons) is described
by the non-Markovian kinetic equation (34) exactly. This is a
trivial consequence of the fact that the RI (t) term neglected in
the derivation of this equation consists solely of zero-quantum
coherences.

In order to test the validity of Eqs. (87) and (88) in the
non-Markovian regime, we compared the results obtained
through these equations with the results obtained by the di-
rect simulations of the exchange, using CO–CO 13C pair as
the model system. Fig. 10 shows the signal s(t) computed
with both methods for the n = 0 rotational resonance con-
dition (which is allowed by the presence of large 13C CSAs).
The direct simulation method is expected to produce physi-
cally accurate results only for a certain initial period of the
exchange, the duration of which is limited by the number of
protons included in the simulation. As one can see, the ex-
change curves computed with the two methods are identical
until the point when the direct method curve starts to stray
to its stationary value, suggesting that the curve computed
through Eqs. (87) and (88) is physically accurate for a signifi-
cant part of the exchange process, possibly even for the entire
time of exchange. Simulations with the fewer protons in the
system produce progressively smaller intervals over which the
two methods give identical results.

Figure 11 compares S(ω) spectra computed for differ-
ent values of the dipolar C–C coupling in the same system

FIG. 10. Non-Markovian magnetization exchange during R3-PDSD in a
CO–CO pair at the exact n = 0 rotational resonance computed through
Eq. (87) (black) and by the direct method (red) for a single crystallite. The
long-term behavior is shown on the inset. The parameters of the Hamilto-
nian are as for the {Gly1–CO, Val3–CO} pair in GGV, except that the dipolar
C–C coupling is scaled by a factor of 8 and the 13C isotropic chemical shift
difference is set to zero. Ten nearest protons are included in the system. Mag-
netizations are normalized to give a unit signal at t = 0. The angle between
the C–C axis and the rotor axis is 45◦. The spinning frequency is 10 kHz;
the 1H RF field is 60 kHz. Using Eq. (88) instead of the iteration through
Eq. (87), gives essentially the same result.

at the n = 1 rotational resonance condition with the 13C CSA
effects neglected. The spectra obtained with the two meth-
ods are very similar, although not identical. Analogous sim-
ulations for other systems resulted in even larger differences
between the two methods, possibly indicating an insufficient
number of protons included in the simulations with the direct
method, or even a limited validity of the basic equation (34).

FIG. 11. Non-Markovian magnetization exchange during R3-PDSD in a hy-
pothetical 13C pair at the exact n = 1 rotational resonance computed through
Eq. (87) (solid lines) and by the direct method (dashed lines) for different
scaling values applied to the dipolar C–C coupling. The spectra are shown
instead of the time-domain signal. The proton environment for the pair is as
for the {Gly1–CO, Val3–CO} pair in GGV; the 13C CSA difference is set to
zero; the 13C isotropic chemical shift difference is set to 10 kHz. The dipo-
lar C–C coupling is scaled (relative to the GGV pair) by the factors of 1
(black), 2 (red), 4 (green), and 8 (blue). Ten nearest protons are included in
the system. Magnetizations are normalized to give a unit signal at t = 0. The
spectra computed by the direct method are obtained after applying baseline
correction to the time-domain signal (in order to remove the singular peaks at
ω = 0). The angle between the C–C axis and the rotor axis is 45◦. The spin-
ning frequency is 10 kHz; the 1H RF field is 60 kHz. Using Eq. (88) instead
of the iteration through Eq. (87), gives essentially the same result.

Downloaded 07 Oct 2011 to 160.39.5.118. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



134509-20 M. Veshtort and R. G. Griffin J. Chem. Phys. 135, 134509 (2011)

A more detailed study of these differences is required to de-
termine their origin.

Importantly, the results obtained with both methods
above, while in relative agreement with each other, are qual-
itatively different from the results predicted by the semi-
phenomenological treatment of R2. Indeed, for large dipolar
coupling values, Eq. (90) can be approximated as

s(t) � e− 1
2 αt cos �t, (92)

which predicts that the two peaks in S(ω) will not change their
width and amplitude as the dipolar coupling is scaled. This is
in a stark contrast with the results displayed in Fig. 11, sup-
porting our conjecture regarding the inadequacy of the semi-
phenomenological treatment of relaxation in R2 experiments.
A conclusive statement on this issue can be made only after
comparing the simulations with the experiment.

E. The DARR model

It was suggested by Takegoshi et al.18, 47 that R3-PDSD
can be understood through essentially the same approach as
used to describe most other recoupling sequences in solid-
state NMR, i.e., through computing the average Hamilto-
nian for one modulation period (rotor cycle in this case) of
the pulse sequence. The authors postulated that the 1H–1H
homonuclear interactions are not essential for understanding
the R3-PDSD mechanism and proposed a three-spin system
consisting of two 13C nuclei and one proton to model this ex-
periment theoretically. In the interaction frame defined by the
RF term, and assuming that the RF field amplitude matches
the spinning frequency, the first-order average Hamiltonian
of this three-spin system differs from the rotational resonance
Hamiltonian only by an additional chemical-shift-like term
resulting from the C–H interaction recoupled by the applied
RF field. Hence, the name DARR (dipolar-assisted rotational
resonance) has been proposed for this experiment and for the
proposed magnetization transfer mechanism.

The theoretical and experimental results presented in this
work make it clear that both this term, as well as the model it-
self are inadequate for the description of R3-PDSD. To further
illustrate this point, we show in Fig. 12, the magnetization ex-
change curves computed for the following Hamiltonians: the
three-spin model Hamiltonian used by Takegoshi et al.18, 47

(blue line), the extended version of this Hamiltonian obtained
by adding two more protons to the spin system but with all
1H–1H interactions omitted (red line), same but with the total
of 10 protons in the system (green), and, finally, the 10-proton
case but with the normal 1H–1H interactions (black). As one
can see, the homonuclear interactions are absolutely essential
for R3-PDSD. Without them, the dissipation of coherences re-
quired for relaxation (Eq. (34)) does not occur, making the ex-
ponential decay of the difference magnetization impossible.
The DARR oscillations become attenuated with the addition
of protons into the system in Fig. 12 because the R3-recoupled
C–H dipolar line width in this system becomes much larger
than the C–C coupling. As the line is inhomogeneous, only a
small portion of it is capable of producing the DARR effect.

Furthermore, not only one cannot neglect the 1H–1H cou-
plings in order to simplify the Hamiltonian but also any at-

FIG. 12. DARR vs. R3-PDSD. Magnetization exchange between the two 13C
nuclei simulated using different models (in a single crystallite). The blue, red,
and green lines are for the DARR-type models (i.e., with the H–H dipolar
couplings omitted from the Hamiltonians) containing 1, 3, and 10 protons,
accordingly. For the blue line, the smaller of the two C–H couplings is also
set to zero (as in the original DARR model18, 47). The black line is for the full
R3-PDSD Hamiltonian in the system with 10 protons. The distance between
the 13C nuclei is 3.19 Å, with the internuclear axis tilted 18◦ from the rotor
axis for the chosen crystallite orientation. The proton environment is that
of a CO–CO pair in AGG. The spinning frequency and the 1H-resonant RF
field are 10 kHz. No CSAs are present. The 13C chemical shifts difference
(10.7 kHz for the blue and 10.8 kHz for all other lines) is optimized for the
chosen crystallite orientation to give the maximum possible magnetization
transfer in the vicinity of (but not on) the rotational resonance condition.

tempts at using the standard average Hamiltonian description
for the PDSD phenomenon are unlikely to be very efficacious.
Indeed, the interaction frame PDSD Hamiltonian (Eq. (21))
is not periodic, which implies that its average Hamiltonian
is different for every rotor cycle. The rotating frame Hamil-
tonian is periodic, but the series for its average Hamiltonian
– the Magnus expansion – is unlikely to even converge for
moderate spinning frequencies due to its large (relative to ωR)
size.87 When the expansion does converge (at high spinning
frequencies) and can be approximated by the second-order
term, it would still be unclear what kind of spin dynamics
this average Hamiltonian would generate, unless one resorts
to the numerical computation of its propagator.

VII. SUMMARY AND CONCLUSIONS

Kinetic equations for the Markovian and non-Markovian
regimes of proton-driven spin diffusion in rotating solids
were derived using an original approach emphasizing dissipa-
tion of coherences as the source of the apparent irreversibil-
ity of the dynamics in the macroscopic systems. The non-
Markovian equation has the form of a memory function equa-
tion, with the role of the memory function played by the cor-
relation function. The theory describes MAS PDSD experi-
ments with any form of periodic RF field applied at the 1H
frequency, including CW or no field (specific experiments are
suggested to have compound names such as R3-PDSD). Ac-
curate expressions for the correlation functions and for the
spin diffusion constants are given (Eqs. (47)–(49)). The ef-
fects of the CH and HH dipolar couplings enter these expres-
sions through the Fourier components of the zero-quantum
coherence lineshape. The theory predicts that the correlation
functions and spin diffusion constants in multi-site PDSD can
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be approximated by the corresponding quantities in the two-
site PDSD, although the accuracy of this approximation may
depend on the specific PDSD experiment.

Direct numerical simulations of the coherent PDSD dy-
namics (as described by the reversible Liouville-von Neu-
mann equation) have been shown to fruitfully compliment the
theory. On the grand scale, with the help of such simulations,
PDSD in rotating solids emerges as an apparently irreversible
macroscopic process that can be studied in full microscopic
detail via reversible dynamics. A clean exponential decay can
be observed in systems consisting of only 12 spins. As a con-
sequence, PDSD suggests itself as a unique model for gaining
insights into various issues of fundamental importance in the
relaxation theory and other physical theories. On a smaller
scale, such computations can be used to simulate important
details of the spin diffusion dynamics in both Markovian and
non-Markovian regime, corroborating and clarifying results
obtained through the relaxation theory of spin diffusion. In
particular, these simulations reveal the initial chaotic phase of
the dynamics, which is traditionally considered inaccessible
through the relaxation theory. The main limitation of this ap-
proach is that, due to the finite size of the system, the apparent
macroscopic behavior stops after a certain degree of transfer
is reached. As a result, the reversible model can be used to ac-
curately simulate only a certain initial period of the magneti-
zation exchange in any real physical system. Nevertheless, an
accurate value for the spin diffusion constant can be usually
obtained (from this initial period) through direct simulations
of PDSD in systems of two 13C nuclei and about ten 1H nuclei
from their nearest environment. The spin diffusion constant
can be also obtained through equations given by the relax-
ation theory, using a correlation function computed through
the simulations of the full quantum dynamics of the zero
quantum coherence decay in the same systems. The constants
resulting from these two approaches (“direct” and “spectral
densities”) are shown to be in excellent agreement with each
other. The 2D R3-PDSD experiments performed on the model
compounds showed that these computations are also in excel-
lent agreement with the experiment, with the model error of
only about 0.5% for all thee compounds.

The samples used in the PDSD experiments (serine,
AGG, and GGV, each containing three 13C nuclei) were pre-
pared by diluting the labeled compounds with the natural
abundance compounds in ratios of 1:9 or higher. Even at
these dilutions, intermolecular magnetization exchange was
very significant. In order to account for it, we had to simulate
spin diffusion in systems containing 230–450 13C nuclei that
were set up to model the random distribution of the labeled
molecules on the crystal lattice. Had the measurements been
performed in pure labebled compounds, the data would have
been much easier to interpret quantitatively, and would have
probably produced smaller model error. The following factors
have also been found important for the accuracy of the model:
corrections for vibrational averaging in directly bonded C–C
and C–H pairs, 13C isotropic chemical shifts and CSA tensors,
dynamics of the -CH3, -NH3 groups, and the spin-lattice re-
laxation (for long mixing times).

Distances between directly bonded 13C nuclei could be
extracted from the data with the 95% confidence intervals of

about ±0.25% (or ±0.004 Å). Longer distances were less ac-
curate and had larger confidence intervals. The main source of
the error was traced to the loss of information due to the re-
layed transfer of magnetization between distant nuclei. This
issue is likely to be resolved when the measurements are
done in molecules with multiple 13C sites (partly, through the
presence of multiple geometric constraints), and when several
PDSD data sets (for different 1H RF fields and spinning fre-
quencies) providing complementary information are available
for the same molecule.

The estimate we obtained for the effective CA–CB dis-
tance in serine (1.532 ± 0.0035 Å) is likely to be the most
accurate estimate of a dipolar coupling in a directly bonded
C–C pair available to date. When compared with the esti-
mate of this distance given by the diffraction methods (1.514
± 0.002 Å), it yields the room temperature vibrational aver-
aging correction of +0.018 ± 0.004 Å. The effective C–H
distance in the CA group we used in the simulations (1.12 Å)
was estimated to be accurate within ±0.007 Å. PDSD ex-
periments can be easily designed to measure this and other
directly bonded CH distances to even higher precision. The
accurate knowledge of these distances would improve the ac-
curacy of the C–C distance measurements performed in future
PDSD experiments.

Simple qualitative analysis of numerically simulated
zero-quantum lineshapes can be used to understand or de-
sign PDSD experiments for various applications. As an ex-
ample, the MIRROR recoupling condition can be trivially un-
derstood in this context. Another important observation that
can be made about the zero-quantum lineshapes is that they
are never Lorentzian.

The non-Markovian kinetic equation can be transformed
to the frequency domain, where it can be solved to various
degrees of approximation. This approach was applied to the
dynamics of exchange in rotational resonance, which is a
special case in the relaxation theory of PDSD. The conven-
tional semi-phenomenological treatment of relxation in the
R2 exchange has been shown to be equivalent to the assump-
tion of the Lorentzian lineshape for the zero-quantum coher-
ence spectrum in our PDSD theory. Since these lineshapes are
never Lorentzian in real physical systems, it is expected that
the conventional treatment of rotational resonance is likely to
carry a significant model error that has not been previously
recognized. The theory presented in this work appears to be a
more accurate alternative, as it provides a natural, parameter-
free description of the R2 exchange dynamics. Predictions of
this theory agreed well with the full quantum mechanical sim-
ulations of the R2 exchange in the few simple model systems
we considered. However, due to the possible limitations on
the validity of the basic non-Markovian equation, a conclu-
sive statement on this issue can be made only after an exten-
sive comparison with the experiment.
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APPENDIX A: EXPRESSION FOR THE CORRELATION
FUNCTION

Substitution of Eq. (41a) into Eq. (40) yields

�(t + τ ; τ ) = 1

4
∥∥I

(23)
z

∥∥2 D(t + τ )D(t)e−i(τωiso
� +φ(t+τ )−φ(t))

× Tr
(
I

(23)
− UH(t + τ, t)I (23)

+ U
†
H(t + τ, t)

)+ c.c.,

(A1)

where we used the identity

eiϕIz I−e−iϕIz = e−iϕI−. (A2)

Substitution of the expressions for D(t) (Eqs. (6) and (13)),
eiφ(t) (Eq. (43)), and G(t ; τ ) (Eqs. (44) and (45)) into Eq. (A1),
followed by the use of the identity ‖I (23)

+ ‖2 = 2‖I (23)
z ‖2 trans-

forms Eq. (A1) into

�(t+τ ; τ )= 1

12

∑
q

2∑
k,m=−2

∑
l,n

D
(k)
2,0e

ikωR(t+τ )D
(m)
2,0 eimωRt e−iωiso

� τ

×C(n)∗e−inωR (t+τ )C(l)eilωRt eiqωRtGq(τ ) + c.c.

= 1

12

∑
q

2∑
k,m=−2

∑
l,n

D
(k)
2,0D

(m)
2,0 C(l)C(n)∗

×ei(k+m−n+l+q)ωRt ei(kωR−nωR−ωiso
� )τGq(τ ) + c.c,

(A3)

Substituting t → t − τ on both sides of the equation results
in

�(t ; τ )= 1

12

∑
q

2∑
k,m=−2

∑
l,n

D
(k)
2,0D

(m)
2,0 C(l)C(n)∗ei(k+m−n+l+q)ωRt

× ei(−mωR−lωR−qωR−ωiso
� )τGq(τ ) + c.c. (A4)

Now, instead of n and l, we will use two new indices, p and r,
defined by the relations

k − n = p, (A5)

k + m − n + l + q = r. (A6)

This results in

�(t ; τ ) = 1

12

∑
p,q,r

2∑
k,m=−2

D
(k)
2,0D

(m)
2,0 C(r−p−m−q)C(k−p)∗eirωRt

× ei(pωR−rωR−ωiso
� )τGq(τ ) + c.c. (A7)

The double sum over k and m can now be rearranged as a
product of two sums:

�(t ; τ ) = 1

12

∑
p,q,r

eirωRt ei(pωR−rωR−ωiso
� )τGq(τ )

×
{

2∑
k=−2

D
(k)
2,0C

(k−p)∗
}{

2∑
m=−2

D
(m)
2,0 C(r−p−m−q)

}
+c.c.

(A8)

Substitution of the quantities ω
(n)
D (defined by Eq. (48)) for

these sums gives our final expression for the correlation func-
tion:

�(t ; τ )= 1

2

∑
p,q,r

ω
(p)
D ω

(p+q−r)∗
D eirωRt ei(pωR−rωR−ωiso

� )τ

×Gq(τ )+c.c. (A9)

APPENDIX B: CORRELATION FUNCTIONS IN
MULTI-SPIN DIFFUSION

For any two observables F and Q, which are assumed
to commute with H0(t), the correlation function expression
(Eq. (35)) can be transformed as follows:

�FQ(t ; τ ) = 1

‖F‖‖Q‖T r
(
F [HI (t), [HI (t − τ ),Q]]

)

= − 1

‖F‖‖Q‖T r
(
[HI (t), F ][HI (t − τ ),Q]

)

= − 1

‖F‖‖Q‖T r
(
U

†
0 (t)[H1(t), F ]U0(t)U †

0 (t − τ )

× [H1(t − τ ),Q]U0(t − τ )
)

= − 1

‖F‖‖Q‖T r
(
[H1(t), F ]U0(t, t − τ )

× [H1(t − τ ), Q]U †
0 (t, t − τ )

)
. (B1)

With the Hamiltonian given by Eq. (20) and Qz (Eq. (17)) as
both F and Q, this leads to Eq. (38).

With F = Ikz, Q = Ilz, and the Hamiltonian given by
Eq. (58), Eq. (B1) can be evaluated as follows:

�kl(t ; τ )=− 1

‖Ikz‖2
T r

(
[H1(t), Ikz]U0(t, t−τ )[H1(t−τ ), Ilz]

×U
†
0 (t, t−τ )

)=−
∑
j (�=k)
i(�=l)

Dkj (t)Dli(t−τ )
1

‖Ikz‖2

×T r
([

I kj (23)
x ,Ikz

]
U0(t,t−τ )

[
I li(23)
x ,Ilz

]
U

†
0 (t, t−τ )

)
= −

∑
j (�=k)
i(�=l)

Dkj (t)Dli(t−τ )
1

‖Ikz‖2
T r

([
I kj (23)
x , I kj (23)

z

]

×U0(t, t − τ )
[
I li(23)
x , I li(23)

z

]
U

†
0 (t, t − τ )

)
=

∑
j (�=k)
i(�=l)

Dkj (t)Dli(t − τ )
1

‖Ikz‖2

× T r
(
I kj (23)
y U0(t, t − τ )I li(23)

y U
†
0 (t, t − τ )

)
. (B2)
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In the first step, we used the fact that [I ij (23)
x , Ikz] vanishes

unless i = k or j = k. In the second, we used

Ikz = 1

2
(Ikz − Ijz) + 1

2
(Ikz + Ijz) = I kj (23)

z + I kj (14)
z . (B3)

Now, we will show that for the trace
T r(I kj (23)

y U0(t, t − τ )I li(23)
y U

†
0 (t, t − τ )) to be distinct

from zero, indices kj must be the same as li or il. We will first
focus on the I

li(23)
+ component of I li(23)

y

I li(23)
y = 1

2

(−iI
li(23)
+ + iI

li(23)
−

) = 1

2
(−iIl+Ii− + iIl−Ii+),

(B4)

writing it out explicitly as a product of the constituent single-
particle operators:

Il+Ii− = 1(H)Il+Ii−
∏
j

(�=l, �=i)

1(j ), (B5)

where 1(H) is the unit operator in the spin space of the protons,
and

1(j ) = Ijα + Ijβ, (B6)

are the unit operators of the 13C or other low-gamma nuclei. If
the product in Eq. (B5) is expanded using Eq. (B6), we obtain

Il+Ii− =
∑

ν

1(H)Il+Ii−
∏
j

(�=l, �=i)

Ijσ (ν,j ), (B7)

where the sum is over all possible “diagonal” states of the
system of all 13C nuclei, except l and i, and σ (ν, j ) is the state
(α or β) of spin j in the state ν. Since H0(t) is diagonal in
these α/β states,

U0Il+Ii−U
†
0 =

∑
ν

B(H)
ν Il+Ii−

∏
j

(�=l, �=i)

Ijσ (ν,j ), (B8)

where B(H)
ν are some operators in the spin space of the pro-

tons. The matrix structure of the operators in Eq. (B8) can be
easily visualized in a representation, where the states are or-
dered to make H0(t) block-diagonal (i.e., where the 1H states
are “faster” than the 13C states).

Combining Eq. (B8) with the property of the trace of a
direct matrix product,

T r(A ⊗ B) = T r(A)T r(B), (B9)

we can evaluate the trace:

T r(Ik+Ij−U0Il+Ii−U
†
0 ) =

∑
ν

T r
(
B(H)

ν

)

× T r

(
Ik+Ij−Il+Ii−

∏
j

(�=l, �=i)

Ijσ (ν,j )

)
.

(B10)

As one can see, this trace is distinct from zero only if k

= i and j = l. Analogously, T r(Ik−Ij+U0Il+Ii−U
†
0 ) is dis-

tinct from zero only if k = l and j = i. The I
li(23)
− compo-

nent of I li(23)
y will obviously give the same selection rules (but

in reverse order). Finally, returning to Eq. (B2), for the case
when k �= l, we obtain Eq. (60) using

I kl(23)
y = −I lk(23)

y . (B11)

For the case when k = l, we obtain Eq. (61).
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